Flame Spread along a Thin Combustible Solid with Randomly Distributed Square Pores of Two Different Sizes

abe syuhei, ito akihiko, torikai hiroyuki

Abstract


The objective of our study is to predict the flame spread route by the quantity of combustible materials and their placement. In this paper, we examine non-uniform flame spread in open air along a thin combustible solid with randomly distributed square pores of two different sizes (8 x 8 and 4 x 4 mm respectively). Experimental results show that the flame-spread probability falls with increasing porosity. Despite uniform porosity, the flame-spread probability differs with the rate of large square pores to small square pores. For a combustible area larger than a noncombustible area, the flame-spread probability reaches the local minimum value with a change in R8 (ratio of 8 mm pores) under the same porosity condition. Conversely, for a combustible area smaller than a noncombustible area, the flame-spread probability reaches a local peak with changing R8 under the same porosity condition. In addition, we calculated the ratio of the unburned area (unburned area / total combustible area) by counting the unburned cells after the flame spread test, which might be useful to predict the fire hazard. We found that the ratio of unburned area grows with increasing porosity.


Full Text: PDF DOI: 10.5539/mas.v6n9p11

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.