Silicon Potential as Attenuator of Salinity Effects on Growth and Post-harvest Quality of Lettuce


  •  Hozano Lemos Neto    
  •  Marcelo Guimarães    
  •  Rosilene Mesquita    
  •  Italo Gomes Sampaio    
  •  Ana Régia Hendges    
  •  Alexandre de Oliveira    

Abstract

Silicon (Si) is a mineral element that provides many benefits to plants and may also assist in tolerance to abiotic stresses such as salinity. The aim of the study was to evaluate the use of Si as a possible attenuator of the deleterious effects of salinity on growth and post-harvest of lettuce. A completely randomized design with four replicates was performed in a 3 × 2 factorial, consisting of three salinity levels (1.65, 3.65, 7.65 dS m-1) and two levels of silicon (0.0 and 2.0 mM). Salinity reduced all variables related to plant growth. For shoot fresh and dry mass, it was observed that NaCl caused a reduction of 79.80 and 80%, respectively, in comparison to the control. However, parameters related to post-harvest such as titratable acidity, soluble solids and vitamin C increased with salinity. Although not effective in reducing saline stress on plant growth, Si provided improvements in the variables related to lettuce post-harvest. Salinity significantly reduced plant growth in the presence and absence of Si, but provided better post-harvest quality with Si.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1916-9752
  • Issn(Onlne): 1916-9760
  • Started: 2009
  • Frequency: monthly

Journal Metrics

(The data was calculated based on Google Scholar Citations)

  • Google-based Impact Factor (2016): 2.28
  • h-index (December 2017): 31
  • i10-index (December 2017): 304
  • h5-index (December 2017): 22
  • h5-median (December 2017): 27

Contact