On the Convergence Rate for a Kernel Estimate of the Regression Function
- Mounir ARFI
Abstract
We give the rate of the uniform convergence for the kernel estimate of the regression function over a sequence of compact sets which increases to $\mathbb{R}^{d}$ when $n$ approaches the infinity and when the observed process is $\varphi$-mixing. The used estimator for the regression function is the kernel estimator proposed by Nadaraya, Watson (1964).- Full Text: PDF
- DOI:10.5539/ijsp.v5n2p29
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org