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Abstract

We give the rate of the uniform convergence for the kernel estimate of the regression function over a sequence of compact
sets which increases to R when n approaches the infinity and when the observed process is ¢-mixing. The used estimator
for the regression function is the kernel estimator proposed by Nadaraya, Watson (1964).
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1. Introduction

Let (X;, Y;), € N be a strictly stationary process where (X, Y;) takes on values in RxR and distributed as (X, Y). Suppose
that a segment of data (X;, ¥;);_, has been observed.

We are interested in the study of the rate of convergence for a kernel estimate of the regression function, known as:
r(x) = EYJ|X,=x) teN.
A natural estimator of the function r(.) is given by
< x—X;
ZY,K
=1 h
ra(X) = —————— Vx€eE

I x—X,)
K
25

Where E stands for the subset {x € R, f(x) > 0}, f being the density of the process (X;) and (%,) is a positive sequence of
real numbers such that 4, — 0 and nh? — oo when n — oco.

K is a Parzen-Rosenblatt kernel type in the sense of a bounded function satisfying

f K(x)dx =1 and lim ||x]|K(x) =0
R

[Ixl| =0

Moreover, it is assumed to be strictly positive and with bounded variation.

The estimation of the regression function has been subject to several investigations, and many authors have been involved.
Among others, Devroye (1981), Collomb (1984, 1985), Gyorfy et al. (1989), Hardle (1990), Bosq (1996), Arfi (1996),
Arfi (1997) and Walk (2006).

Watson (1964), for instance, considered the estimation of the conditional expectation as a predictor of ¥ and applied this
method to some climatological time series data; Nadaraya (1964), established the same estimator independently.

Gasser et al. (1984) introduced a kernel estimate for obtaining a nonparametric estimate of a regression function and
its derivatives, Sara Van De Ger (1990) proposed an entropy approach to establish rates of convergence for estimators
of a regression function and later on Hermann and Ziegler (2004) studied the rates of consistency for a nonparametric
estimation of the mode in absence of smoothness assumptions.

Our work is devoted to the rate of the uniform convergence for a kernel estimate of the regression function over an
increasing sequence of compact sets under a mixing condition.
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2. Preliminaries and Assumptions

We assume that the process (X; )y is stationary and ¢-mixing that is

@, = sup sup {|P(B/A)—PA)} — 0, n—
AeMi) BeM,

where Mj is the o-field generated by {Xo, X1, ..., X;} and M7}, is the o-field generated by {Xi1n, X1 14n, ..}
We will make use of the following assumptions
Al. AT <oo, VxeRY  f(x)<T
and
Ay, >0, VxeC, f(x)=vy,
where C,, is a sequence of compact sets such that C,, = {x : ||x]| < ¢,} and ¢;, = oo
A2.38>2, AM < oo such that E(|Y}®) < M
A3.AV <00, VxeR?Y E[Y-r(x)X=x]<V
A4. The density f is twice differentiable and its second derivatives are bounded on R?
AS. The kernel K is Lipschitz of ratio L that is |[K(x) — K(y)| < Lg|lx — y||”!
3. Main Result
Theorem
Assuming that the assumptions A1 through AS hold, we further assume that the function r is Lipschitz, bounded on R¢
and that the bandwith sequence (#,,) satisfies with y,:

ny iy — 00 n— oo

div din n!=20y2pd
nyn (lOgn) ’)Inhn
Vey >0 Z{ d(1+d/71) xp _GOT)}n =

Where 6 €]0, 1/2[, m, and y, are two sequences such that:
1<m,<n/2 and 1 <y, < n/2

If the kernel K is even with f 22K (2)dz < oo for z = (z1, ..., z4) and if there exists a constant D such that y;l y,,n‘shz <D
then if r is continuous, Lipschitz and bounded on R we have:

n° sup [ra(x) — r(x)| = O(1) a.s. n— oo.
[lxll<cp

4. Preliminary Results

For practical reason, we make the following decomposition:

1
ra(x) = r(x) = ——{[gn(x) — 7(x) f ()] = (D[ fn(x) = fF(O]}
)

where g,(x) = ZY, (x Xt)

and fn(x)_id K(X"X’)
I =

ha
This leads to

1
sup [ (x) = r(x)| = 1) {Sup lgn(x) = r(x) (0] + sup [ ()| fu(x) = f (X)I}

xeC, xeC, xeC,

Then if

sup [r,(x)| <y, a.s. we obtain
xeC,
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sup [ (x) — r(x)| = {Sup gn(x) = () f(Ol + yu sup [ fu(x) = f (X)I}

xeCy, xeCp xeCp

The following Lemma will be used in our proofs
Lemma (Collomb, 1984)

Let Z; be a real centered and ¢-mixing process such tha:
Zl<d, EZ) <D, EIZI<6,

then, Ve > 0, Vn € N* we have:

P{I ZZ’| > e} 2exp {—ae +3 \/En%" +6a’n

D, + 66,d, i ©®
=

J
=1
Lemma 1

Under the hypotheses of Theorem we have:

y;ln‘s sup |gn(x) — Eg,(x)] > 0 a.s. n— oo.

xeC,

Proof:
Because of the possible large values for ¥;, we use a truncation technique which consists in decomposing g, in g/ and g,

where
8n(x) = i Z Yoy K ™

noy=1

and g (x) = g,(x) — g1 (x), where y, is the unbounded sequence defined in the Theorem.

We start by showing that:
y;ln‘s sup |g,(x) —Eg,(x)| =0 a.s. n— oo.

[Ixll<cn

To this end, we write:

8,(x) — Eg,(x) = Z ¢, with
1 -X x-X
Yr = hd {YzH[|Y,|<}n]K( » ’) E [Y,H[mgyn][{( " t)]}

= d, where K is an upperbound of K, which permits to write:

ngEthVXt:M)K X—U du
n hg hn
Leading by Schwartz inequality and the assumption A3 to:

2 12 _
SR o KGR TN [T P

therefore E(gp,) = 0
Klyn

sl <

n

xX,

or
Elpl < —E H[IYrI<yn]K( )

where 7, is a positive constant.

Now, same arguments give:

2
E(@) <= f r (L;l)z: V) ( W )du <wvn

where v is a positive constant.

We apply the Collomb inequality with @ = 1/(4m,d,,) and we obtain for all €, > O:

d
Pl - Egy (0] > @) < Crexp-Caci 22

nn
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where C; and C, are two positive constants.
Next, we cover C, by u‘,{ spheres in the shape of {x : ||x — x|l < cnygl} where 1 < j < uj;'.

And we make the following decomposition:

g, (¥) = Eg,, (0] < |8, (x) = &, (xjn)| + 18, (Xjn) — Eg,, (xju)l + |EG,, (Xjn) — &, (X)]

.X_Xt -xjn _Xt
K -K|———
( h” ) ( hn )

and we have
n

- _ Yn Z
—_ in S _
Ign(x) gn(‘x] )l nhz £

The kernel K being Lipschitz we obtain

_ - y
850 = 85 ()| < Ll = il
n
- - Yn Y,
|gn ()C) - gn (xjn)| < LKhdJr)’l Cn Hn
n

1
|g;(x) - g;(xjn)| < l_
ogn

If we choose |
Uy I callogn)! 17

—
K i+ 0.
iy

Mn =L

Thus we obtain:

~ ~ ~ ~ 2
sup Ig, (x) = Eg,(x)| < sup g, (xjn) — Eg, (x;)| + Toen
xeC, 1<j<pd ogn

Therefore, if we apply u¢ times the Lemma of Collomb, we obtain

, nhd
P(sup lg, (x) — Eg, (x)] > 26,,) < Ciul exp (—Cgen i )
xeC, Myyn

Now if we choose €, = n™ %, ¢ for a certain & > 0, we obtain accordingly with the hypotheses of the Theorem:

divi d d/y 1-26,27,d
- _ _ Y Cy(logn) nyuh
P('ynln‘s sup |g, (x) — Eg,(x)| > 26()) < CILL;(/Y' nhd’(lT/m exp _szg#
n

IIxlI<cn nYn

The hypotheses of the Theorem permit to conclude that:

7;1n‘5 sup |g,(x) —Eg,(x)| — 0, a.s. n— o0

[lxll<cn
It remains to show that:
nly;! sup gf(x) — Egi(x)] = 0, a.s. n— oo,
[lxll<cn
For practical reason, we write:
n®y. ! sup |gt(x) — Egh(x)| < E, + F,
[Ixl<cy,
Where,
6.1 n
n’y, x—-X;
E, = sup Yy sy K ( )
" nhd e, ; L

And we have
(E, #0)c {31 €[1,2,3,...,n] such that |Y,|> y,}

the above leads to
n

Eq #0) c |_J1vid > ya)

t=1
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P(E, #0) < )" PYi| > y,) = nP(IY,| > y,)

t=1

D P(E, #0)< ) POV >y,) < ) ny EIYP

ZP(En¢O)SC4Zny;’B<oo

n

where c4 is a positive constant.

Then E,, — 0,a.s., n — coand sup|Y;| <y, a.s.
1<t<n

The kernel K being strictly positive, we conclude that |r,,(x)| <y, a.s.

Moreover,
s .
T A L L |
1’16
F, < n_h;{KlE[lylebyn]
n® _g8/2
Fus g K(EX) P> yaD)'? < esny, iy =0, n— oo

where cs is being a positive constant.
Lemma 2

Under the assumptions of the Theorem, we have:

n0y; " sup |Eg,(x) — r(x) f(x)] = 0, n — co.

xeR4

Proof:

1 . -X
Egu(x) - r) f(x) = ﬁE{Z Y,K(x - )} - Hf(x)
n =1 n

1 —
Ega(0) = 0 = - fR d r(u)K(xh “)f(u)du W)

We write z = (x — u)/h, and we obtain
Egy(x) — r(x)f(x) = f (e = zhy) = rOIK(@Q) f(x = 2ha)dz + r(x) f K@[f(x = zhy) — f(0)]dz
R
Assuming that the function r(.) is Lipschitz of ratio 1 and order 1 provides

[r(x = zhy) — r(X)]K(2) f(x = zh,)dz
Rd

Shnl"lelK(z)dZ

Now a Taylor expansion, the Bochner lemma and the fact that the function r is bounded permit to conclude that

n0y,; ! sup |Ega(x) — r(x)f(x)| = 0, n — co.

xeRd
Lemma 3

Under the assumptions of the Theorem, we have:

- yant
lim sup |fu(x) — Ef,(x)] =0 a.s.

=0 Yn o ali<en

Proof:
This is a particular case of Lemma 1 when ¥; = 1 and € = eoynn“sy,jl for a certain ¢, > 0.

Lemma 4
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Under the assumptions of the Theorem, we have:

5
_ n
lim 2%

n—oo

sup |Efy(x) = f(x)] = 0

n  xeR4

Proof:

We write

hy
A Taylor expansion and the hypotheses of the Theorem and the Bochner lemma permit to conclude.

5. Proof of the Theorem

1 —
Ef(0 = f() = 15 f Lf(u) - f(x)]K(” x)du

The lemma 1, Lemma 2, Lemma 3, and Lemma 4 permit to conclude.
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