On Consistency of Absolute Deviations Estimators of Convex Functions
- Yao Luo
- Eunji Lim
Abstract
When estimating an unknown function from a data set of n observations, the function is often known to be convex. For example, the long-run average waiting time of a customer in a single server queue is known to be convex in the service rate (Weber 1983) even though there is no closed-form formula for the mean waiting time, and hence, it needs to be estimated from a data set. A computationally efficient way of finding the best fit of the convex function to the data set is to compute the least absolute deviations estimator minimizing the sum of absolute deviations over the set of convex functions. This estimator exhibits numerically preferred behavior since it can be computed faster and for a larger data sets compared to other existing methods (Lim & Luo 2014). In this paper, we establish the validity of the least absolute deviations estimator by proving that the least absolute deviations estimator converges almost surely to the true function as n increases to infinity under modest assumptions.- Full Text: PDF
- DOI:10.5539/ijsp.v5n2p1
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org