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Abstract

When estimating an unknown function from a data set of n observations, the function is often known to be convex. For
example, the long-run average waiting time of a customer in a single server queue is known to be convex in the service
rate even though there is no closed-form formula for the mean waiting time, and hence, it needs to be estimated from
a data set. A computationally efficient way of finding the best fit of the convex function to the data set is to compute
the least absolute deviations estimator minimizing the sum of absolute deviations over the set of convex functions. This
estimator exhibits numerically preferred behavior since it can be computed faster and for a larger data sets compared to
other existing methods. In this paper, we establish the validity of the least absolute deviations estimator by proving that
the least absolute deviations estimator converges almost surely to the true function as n increases to infinity under modest
assumptions.

Keywords: convex regression, absolute deviations estimator, consistency

1. Introduction

We study the problem of finding the best fit of an unknown convex function f∗ : [0, 1]d → R to a data set of n observations
(X1,Y1), . . . , (Xn,Yn), where

Yi = f∗(Xi) + εi

for 1 ≤ i ≤ n, the Xis are continuous [0, 1]d–valued independent and identically distributed (iid) random vectors and the
εis are iid random variables with a zero median and E(|ε1|) < ∞.

This problem has been studied extensively for the past few decades. Hildreth (1954) proposed computing the minimizer
g̃n : [0, 1]d → R of the sum of squared errors

n∑
i=1

(Yi − g(Xi))2 /n

over the set of convex functions

C =
{
g : [0, 1]d → R such that g is convex

}
for the case when d = 1. Hanson & Pledger (1976) established the almost sure consistency of g̃n when d = 1 and
Groeneboom et al. (2001) computed the rate of convergence of g̃n when d = 1. Kuosmanen (2008) has shown that g̃n can
be computed as the solution to a quadratic programm with (d + 1)n decision variables and n2 constraints when d ≥ 1.
Computation of g̃n becomes increasingly challenging when n gets large since it involves solving a quadratic program with
n2 constraints. Recently, there have been extensive studies on how to compute the best fit of an unknown convex function
more efficiently. Lim & Luo (2014) suggest computing ĝn : [0, 1]d → R that minimizes the sum of absolute deviations

n∑
i=1

|Yi − g(Xi)| /n

over C instead of the least squares estimator g̃n. In fact, Lim & Lou (2014) reveals that ĝn can be found by solving a
linear program with (d + 3)n decision variables and n2 + 3n constraints. The following table compares the least absolute
deviations estimator ĝn to the least squares estimator g̃n.
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Formulation Number Number
of decision variables of constraints

Least absolute deviations estimator ĝn Linear program (d + 3)n n2 + 3n
Least squares estimator g̃n Quadratic program (d + 1)n n2

Since a linear program can be solved more efficiently than a quadratic program when the other factors remain unchanged,
the least absolute deviations estimator can be preferable from a computational point of view. Numerical results presented
in Lim & Luo (2014) suggests that the least squares estimator ĝn is computed faster and for a larger data sets than the least
squares estimator g̃n.

Another advantage of least absolute deviations estimators is that they can provide more robust results because they are not
sensitive to outliers in the dataset (Bassett & Koenker 1978, Wagner 1959).

In this paper, we establish the strong consistency of ĝn and prove that ĝn(x) converges to f∗(x) for any x ∈ [0, 1]d as n→ ∞
with probability one. Our result will establish that ĝn is a valid estimator of f∗.

This paper is organized as follows. In Section 2, we introduce some definitions. Section 3 introduces the mathematical
framework for our analysis, and precisely states the main theorems (Theorems 1 and 2) of this paper. Proofs of the main
results are provided in Section 4.

2. Definitions

We view x ∈ Rd as a column vector. For x ∈ Rd, we write its kth component as xk, so x = (x1, . . . , xd)T . We let
∥x∥∞ = max(|xi| : 1 ≤ i ≤ d) and ∥x∥ =

(
(x1)2 + · · · + (xd)2

)1/2
. For y ∈ R, we write y+ = max(0, y).

For a function g : [0, 1]d → R, g is differentiable at x ∈ (0, 1)d if and only if there exists a vector v ∈ Rd with the property
that

lim
z→x

(g(z) − g(x) − vT (z − x))/∥z − x∥ = 0.

Such a v, if it exists, is called the gradient of g at x and is denoted by ∇g(x).

For any convex function g : [0, 1]d → R, a vector ξ ∈ Rd is said to be a subgradient of g at x ∈ (0, 1)d if g(y) ≥
g(x) + ξT (y − x) for all y ∈ (0, 1)d. The set of all subgradients of g at x is called the subdifferential of g at x and is denoted
by ∂g(x). The subdifferential ∂g(x) of a convex function g : [0, 1]d → R is non–empty for any x ∈ (0, 1)d; see pp. 215–217
of Rockafella (1970).

Let (an : n ≥ 1) and (bn : n ≥ 1) be sequences of real numbers. We say an = O(bn) if there exist positive constants c and
n0 such that |an| ≤ c|bn| for all n ≥ n0.

3. The Main Result

We start with Proposition 1, provided in Lim & Luo (2014), that reveals how ĝn can be computed numerically.

Proposition 1 Consider the minimization problem in the decision variables (g1, ξ1), . . . , (gn, ξn)

min
1
n

n∑
i=1

|Yi − gi|

s/t g j ≥ gi + ξ
T
i (X j − Xi), 1 ≤ i, j ≤ n,

(1)

where gi ∈ R and ξi ∈ Rd for 1 ≤ i ≤ n. Then, problem (1) has a minimizer (ĝ1, ξ̂1), . . . , (ĝn, ξ̂n) and ĝn : [0, 1]d → R,
defined by

ĝn(x) = max
1≤i≤n

(ĝi + (ξ̂i)T (x − Xi)) (2)

for x ∈ [0, 1]d, minimizes φn over C.

Furthermore, problem (1) has a minimizer (ĝ1, ξ̂1), . . . , (ĝn, ξ̂n) if and only if (ĝ1, (Y1− ĝ1)+, (−Y1+ ĝ1)+, ξ̂1), . . . , (ĝn, (Yn−
ĝn)+, (−Yn + ĝn)+, ξ̂n) is a solution to the following LP in the decision variables (g1, p1,m1, ξ1), . . . , (gn, pn,mn, ξn):

min
1
n

n∑
i=1

(pi + mi)

s/t g j ≥ gi + ξ
T
i (X j − Xi), 1 ≤ i, j ≤ n

Yi − gi = pi − mi, 1 ≤ i ≤ n
pi,mi ≥ 0, 1 ≤ i ≤ n,

(3)
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where gi ∈ R, pi ∈ R,mi ∈ R, and ξi ∈ Rd for 1 ≤ i ≤ n.

Throughout this paper, we will work with the set of minimizers of φn over C:

Sn = {gn ∈ C : φn(gn) ≤ φn(g) for all g ∈ C}

for n ≥ 1. By Proposition 1, Sn is nonempty for all n ≥ 1 almost surely. Proposition 1 suggests a way of computing
an element ĝn in Sn by using (1), (2), and (3). The convex function ĝn is our estimator of f∗. In order to analyze this
estimator, we impose some probabilistic assumptions on the (Xi,Yi)s. In particular, we require that:

A1. X1, X2, . . . is a sequence of iid [0, 1]d–valued random vectors having a common continuous positive density κ :
[0, 1]d → R.

A2. For i ≥ 1, Yi = f∗(Xi) + εi. Given X1, X2, . . . , the εis are iid random variables with the common cumulative
distribution function F.

A3. E (|ε1|) < ∞, thereby implying that

E (|ε1| |X1) =
∫
R
|y|F(dy|X1) < ∞ a.s.

A4. For each x ∈ [0, 1]d, we have F(0|x) = 1/2. Therefore, given X1, X2, . . . , the εis have a zero median.

A5. f∗ is bounded; i.e., there exists a positive constant M such that | f∗(x)| ≤ M for all x ∈ [0, 1]d.

We are now ready to state our main results.

Theorem 1 Assume A1–A5 and that f∗ ∈ C. Then for each 0 < c < 1/2,

sup
x∈[c,1−c]d ,gn∈Sn

∣∣∣gn(x) − f∗(x)
∣∣∣→ 0

as n→ ∞ with probability one.

Theorem 2 Assume A1–A5 and that f∗ ∈ C. If f∗ is differentiable at z ∈ (0, 1)d, then

sup
ξ∈∂gn(z),gn∈Sn

∥ξ − ∇ f∗(z)∥ → 0

as n→ ∞ with probability one.

Furthermore, if f∗ is differentiable on [c, 1 − c]d for any 0 < c ≤ 1/2,

sup
x∈[c,1−c]d ,ξ∈∂gn(x),gn∈Sn

∥ξ − ∇ f∗(x)∥ → 0

as n→ ∞ with probability one.

Theorems 1 and 2 justify our choice of the least absolute deviations estimator ĝn as an estimator of f∗. The next section
provides the proof of Theorem 1. The proof of Theorem 2 is given in the Appendix.

4. Proof of Theorem 1

Our proof of Theorem 1 can be broken down into a number of key steps.

Step 1 Since φn(gn) ≤ φn( f∗) for any gn ∈ Sn, we must have

1
n

n∑
i=1

∣∣∣Yi − gn(Xi)
∣∣∣ ≤ 1

n

n∑
i=1

|Yi − f∗(Xi)|

=
1
n

n∑
i=1

| f∗(Xi) + εi − f∗(Xi)| =
1
n

n∑
i=1

|εi| . (4)
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Step 2 Observe that, for any gn ∈ Sn, we must have

1
n

n∑
i=1

∣∣∣gn(Xi)
∣∣∣ ≤ 1

n

n∑
i=1

|εi| +
1
n

n∑
i=1

|Yi| by (4)

≤ 1
n

n∑
i=1

|εi| +
1
n

n∑
i=1

| f∗(Xi) + εi|

≤ 1
n

n∑
i=1

|εi| +
1
n

n∑
i=1

| f∗(Xi)| +
1
n

n∑
i=1

|εi| .

Thus,

sup
gn∈Sn

1
n

n∑
i=1

∣∣∣gn(Xi)
∣∣∣ ≤ 2E |ε1| + E | f∗(X1)| + 1 , β < ∞

a.s. for n sufficiently large by A3 and the strong law of large numbers.

Step 3 We show that for any A ⊂ [0, 1]d with a nonempty interior, there exists β̃(A) such that

sup
gn∈Sn

inf
x∈A

∣∣∣gn(x) − f∗(x)
∣∣∣ ≤ β̃(A)

a.s. for n sufficiently large.

To fill in the details, we observe that the strong law of large numbers and A3 ensure

1
n

n∑
i=1

| f∗(Xi)| =
1
n

n∑
i=1

|Yi − εi| ≤
1
n

n∑
i=1

|Yi| +
1
n

n∑
i=1

|εi|

≤ E |Y1| + E |ε1| + 1 , β̃

a.s. for n sufficiently large.

The strong law of large numbers also guarantees that

lim inf
n→∞

1
n

n∑
i=1

I(Xi ∈ A) ≥ P(X1 ∈ A) almost surely.

Let

B =

 sup
gn∈Sn

1
n

n∑
i=1

∣∣∣gn(Xi)
∣∣∣ ≤ β for n sufficiently large,

1
n

n∑
i=1

| f∗(Xi)| ≤ β̃ for n sufficiently large,

and lim inf
n→∞

1
n

n∑
i=1

I(Xi ∈ A) ≥ P(X1 ∈ A)

 ,
then by Step 2 and the above arguments, we have P(B) = 1.

Set β̃(A) , (β + β̃ + 1)/P(X1 ∈ A). We will prove that P(C) = 1, where

C =

 sup
gn∈Sn

inf
x∈A
|ĝn(x) − f∗(x)| ≤ β̃(A) for n sufficiently large

 ,
by showing that B ∩Cc = ∅.
Suppose, on the contrary, that ω ∈ B ∩ Cc. Then for such ω, there exists gn ∈ Sn such that infx∈A

∣∣∣gn(x) − f∗(x)
∣∣∣ > β̃(A)
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for infinitely many n. So, we would have

lim inf
n→∞

1
n

n∑
i=1

∣∣∣gn(Xi) − f∗(Xi)
∣∣∣

≥ lim inf
n→∞

1
n

n∑
i=1

∣∣∣gn(Xi) − f∗(Xi)
∣∣∣ I(Xi ∈ A)

≥ lim inf
n→∞

1
n

n∑
i=1

I(Xi ∈ A) lim inf
n→∞

∑n
i=1

∣∣∣gn(Xi) − f∗(Xi)
∣∣∣ I(Xi ∈ A)

max(1,
∑n

i=1 I(Xi ∈ A))

≥ P(X1 ∈ A)β̃(A) = β + β̃ + 1. (5)

On the other hand, we have

1
n

n∑
i=1

∣∣∣gn(Xi) − f∗(Xi)
∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣gn(Xi)
∣∣∣ + 1

n

n∑
i=1

| f∗(Xi)| ≤ β + β̃

for n sufficiently large, which contradicts (5). So, we must have B ∩Cc = ∅, proving Step 3.

Step 4 We observe the following lemma whose proof is provided in the Appendix.

Lemma 1. Let e0 = (0, 0, . . . , 0)T and ei be the ith unit vector for 1 ≤ i ≤ d. Let v∗ = (1/(4d), 1/d, . . . , 1/d). Let Ai be
defined as follows:

A0 =
{
x ∈ [0, 1]d : ∥x − e0∥ ≤ τ

}
,

A1 = [1/2, 1] × [0, 1] × · · · × [0, 1] ⊂ [0, 1]d,

Ai =
{
x ∈ [0, 1]d : ∥x − ei∥ ≤ τ

}
for 2 ≤ i ≤ d,

Ad+1 =
{
x ∈ [0, 1]d : ∥x − v∗∥ ≤ τ

}
.

Then there exists a positive constant τ such that for any y in Ad+1 and xi in Ai for 0 ≤ i ≤ d, there exist nonnegative real
numbers p0, p1, . . . , pd summing to one such that

p0x0 + p1x1 + · · · + pd xd = y

and that p1 ≥ 1/(16d).

Step 5 We observe the following lemma:

Lemma 2. Let ui be the vector identical to ei except that its first element is one minus ei’s first element for 0 ≤ i ≤ d. Let
w∗ = (1 − 1/(4d), 1/d, . . . , 1/d). Let Bi be defined as follows:

B0 =
{
x ∈ [0, 1]d : ∥x − u0∥ ≤ τ

}
,

B1 = [0, 1/2] × [0, 1] × · · · × [0, 1] ⊂ [0, 1]d,

Bi =
{
x ∈ [0, 1]d : ∥x − ui∥ ≤ τ

}
for 2 ≤ i ≤ d,

Bd+1 =
{
x ∈ [0, 1]d : ∥x − w∗∥ ≤ τ

}
.

Then, there exists a positive constant τ such that for any y in Bd+1 and xi in Bi for 0 ≤ i ≤ d, there exist nonnegative real
numbers p0, p1, . . . , pd summing to one such that

p0x0 + p1x1 + · · · + pd xd = y

and that p1 ≥ 1/(16d).

The proof of Lemma 2 is similar to that of Lemma 1 and is omitted.

Step 6 We observe the following lemma whose proof is given in the Appendix.

Lemma 3. There exists a negative constant γ̃ such that

inf
x∈[0,1]d ,gn∈Sn

gn(x) ≥ γ̃

a.s. for n sufficiently large.
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Step 7 We observe the following lemma whose proof is given in the Appendix.

Lemma 4. For any c > 0, there exists a positive constant γ̃(c) such that

sup
x∈Hc,gn∈Sn

gn(x) ≤ γ̃(c)

a.s. for n sufficiently large, whereHc = [c, 1 − c]d.

Step 8 Observe that the a.s. bound on
∣∣∣gn

∣∣∣ and | f∗| uniformly in n over Hc/2 = [c/2, 1 − c/2]d implies that gn and f∗ is
Lipschitz overHc = [c, 1 − c]d uniformly in n a.s. In particular, there exists a positive constant α(c) such that

sup
gn∈Sn

∣∣∣gn(x) − gn(y)
∣∣∣ ≤ α(c)∥x − y∥

and
| f∗(x) − f∗(y)| ≤ α(c)∥x − y∥

for x, y ∈ Hc a.s. for n sufficiently large; see, for example, Roberts & Barberg (1974).

Step 9 Let

Cc = {h : Hc → R such that h is convex onHc,

|h(x)| ≤ |γ̃| + γ̃(c) and |h(x) − h(y)| ≤ α(c)∥x − y∥ for x, y ∈ Hc} .

Note that Steps 6, 7, and 8 guarantee that for each c ≥ 0 there exists n(c) such that n ≥ n(c) and gn ∈ Sn imply that gn
restricted toHc belongs to Cc a.s. Furthermore, Cc is compact in the uniform metric dc given by

dc(h1, h2) = sup
x∈Hc

|h1(x) − h2(x)| .

It follows that for each ϵ > 0, there exists a finite collection of functions h1, . . . , hm in Cc such that

m∪
i=1

{h ∈ Cc : dc(hi, h) < ϵ} ⊇ Cc.

That is, h1, h2, . . . , hm is an ϵ–net for Cc; see Theorem 6 of Bronshtein (1976).

Step 10 We observe the following lemma whose proof is given in the Appendix.

Lemma 5. For any positive real numbers ϵ and δ and for any z ∈ [0, 1]d, we have

sup
gn∈Sn

inf
x∈B(z,δ)

(
f∗(x) − gn(x)

) ≤ ϵ
a.s. for n sufficiently large, where B(z, δ) ,

{
x ∈ [0, 1]d : ∥x − z∥ ≤ δ

}
.

Step 11 We observe the following lemma whose proof is given in the Appendix.

Lemma 6. For any positive real numbers ϵ and δ and for any z ∈ [0, 1]d, we have

sup
gn∈Sn

inf
x∈B(z,δ)

(
gn(x) − f∗(x)

) ≤ ϵ
a.s. for n sufficiently large, where B(z, δ) ,

{
x ∈ [0, 1]d : ∥x − z∥ ≤ δ

}
.

Step 12 We will prove that for any ϵ > 0,
sup

x∈Hc,gn∈Sn

(
f∗(x) − gn(x)

) ≤ ϵ
a.s. for n sufficiently large.

Take δ = ϵ/(6α(c)), where α(c) is given as in Step 8. SinceHc is compact, there exist a finite number of points y1, . . . , yl

inHc such that Bc(yi, δ) , {x ∈ Hc : ∥x − yi∥ ≤ δ} for 1 ≤ i ≤ l coversHc.

6
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If there exists gn ∈ Sn such that supx∈Hc

(
f∗(x) − gn(x)

)
> ϵ for infinitely many n, for each of such n, there exists a point

xn inHc such that

f∗(xn) − gn(xn) > ϵ/2. (6)

In this case, infinitely many of the xns will be in Bc(y j, δ) for some j, so if we choose a subsequence (nk : k ≥ 1) so that
xnk is in Bc(y j, δ) for all k ≥ 1, then for any x ∈ Bc(y j, δ) we have

f∗(x) − gn(x)
= f∗(x) − f∗(xnk ) + f∗(xnk ) − gn(xnk ) + gn(xnk ) − gn(x)
≥ −ϵ/6 + ϵ/2 − ϵ/6 ≥ ϵ/6

by (6).

So, supx∈Hc
( f∗(x) − gn(x)) > ϵ implies infx∈Bc(x j,δ)( f∗(x) − gn(x)) ≥ ϵ/6 for some j, and hence,

P
 sup

x∈Hc,gn∈Sn

( f∗(x) − gn(x)) > ϵ for infinitely many n


=

l∑
j=1

P
 sup

gn∈Sn

inf
x∈Bc(x j,δ)

( f∗(x) − gn(x)) ≥ ϵ/6 for infinitely many n


= 0

by Step 10, proving Step 12.

Step 13 For any ϵ > 0,
sup

x∈Hc,gn∈Sn

(
gn(x) − f∗(x)

) ≤ ϵ
a.s. for n sufficiently large.

The proof is similar to that of Step 12 (Step 11 is used instead of Step 10) and is omitted.

Step 14 Theorem 1 follows from Steps 12 and 13.

Appendix

A.1 Proof of Lemma 1

Let y = (y1, . . . , yd) be any point in Ad+1 and xi = (x1
i , . . . , x

d
i ) be any point in Ai for 0 ≤ i ≤ d. We will show that there

exists a nonnegative solution p0, p1, . . . , pd (summing to one) to the linear system

p0x0 + p1x1 + · · · + pd xd = y

with p1 ≥ 1/(16d).

Or equivalently, we will show that there exists a nonnegative solution p1, . . . , pd (summing less than or equal to one) to
the linear system

d∑
i=1

pi(xi − x0) = y − x0. (7)

The linear system can be reexpressed as F p = y − x0, where p = (p1, . . . , pd)T and F = (Fi j : 1 ≤ i, j ≤ d) is a square
d × d matrix in which the ith column is xi − x0 for 1 ≤ i ≤ d. Note that F is invertible for sufficiently small τ > 0 because
we have

|Fii|
∣∣∣F j j

∣∣∣ >  n∑
k=1,k,i

Fik


 n∑

k=1,k, j

F jk


for all i , j and 1 ≤ i, j ≤ d with sufficiently small τ, and hence, Theorem V of Taussky (1949) applies. So, there exists a
solution p1, . . . , pd to (7).

To show that p1, . . . , pd are nonnegative, sum less than or equal to one, and p1 ≥ 1/(16d), we let G =
(
Gi j : 1 ≤ i, j ≤ d

)
be a square d × d matrix in which the first column is x1 and the ith column is ei for 2 ≤ i ≤ d. Observe that q1, . . . , qd

defined by

q1 = y1/x1
1

qi = yi − y1xi
1/x

1
1

7
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for 2 ≤ i ≤ d satisfy Gq = y, where q = (q1, . . . , qd). Note also that 1/(8d) ≤ q1 ≤ 2y1 and 1/(8d) ≤ qi ≤ yi for 2 ≤ i ≤ d
for τ sufficiently small.

Set |||F||| , sup∥x∥=1 ∥Fx∥. Mapping a d×d square matrix to its inverse is continuous with respect to ||| · ||| in a neighborhood
of F because F is invertible. Thus, we can make |||F−1 − G−1||| sufficiently small by making |||F − G||| or τ sufficiently
small. Also, |||F−1||| ≤ 1/|||F||| ≤ 1/max1≤i, j≤d |Fi j| ≤ 4 for τ sufficiently small. So,

∥p − q∥ = ∥F−1(y − x0) −G−1y∥
= ∥(F−1 −G−1)y − F−1x0∥
≤ ∥(F−1 −G−1)y∥ + ∥F−1x0∥
≤ |||F−1 −G−1||| · ∥y∥ + |||F−1||| · ∥x0∥
≤ |||F−1 −G−1||| + |||F−1|||τ,

and hence, ∥p − q∥ ≤ 1/(16d) for sufficiently small τ. Thus, p1, . . . , pd are nonnegative and sum less than or equal to one,
and p1 ≥ 1/(16d). Lemma 1 is proved.

A.2 Proof of Lemma 3

First, we show that
inf

x∈A1,gn∈Sn

gn(x) ≥ γ̃

a.s. for n sufficiently large. Then it will follow similarly that

inf
x∈B1,gn∈Sn

gn(x) ≥ γ̃

a.s. for n sufficiently large.

By Step 3, there exists a positive constant γ such that

sup
gn∈Sn

inf
x∈Ai

∣∣∣gn(x) − f∗(x)
∣∣∣ ≤ γ

a.s. for all 0 ≤ i ≤ d + 1 and n sufficiently large.

Since | f∗(x)| ≤ M for x ∈ [0, 1]d by A5, we have

sup
gn∈Sn

inf
x∈Ai

∣∣∣gn(x)
∣∣∣ ≤ M + γ (8)

a.s. for all 0 ≤ i ≤ d + 1 and n sufficiently large.

Set γ̃ = −32d(M + γ + 1). For any gn ∈ Sn, if gn(x1) ≤ γ̃ for some x1 ∈ A1 and gn(xi) ≤ (M + γ + 1) for some
xi ∈ Ai (i = 0, 2, . . . , d), then Step 4 guarantees that for any y in Ad+1, there exist nonnegative real numbers p0, p1, . . . , pd

summing to one that satisfy
p0x0 + p1x1 + · · · + pd xd = y

and p1 ≥ 1/(16d). So, we have

gn(y) = gn(p0x0 + · · · + pd xd)
≤ p0gn(x0) + p1gn(x1) + · · · + pdgn(xd) because gn is convex
≤ γ̃/(16d) + (M + γ + 1) because p1 ≥ 1/(16d) and gn(x1) ≤ γ̃ ≤ 0
= −(M + γ + 1).

So, if gn(x) ≤ γ̃ for some x ∈ A1, then we should either have

inf
x∈Ai

gn(x) ≥ M + γ + 1

for some i ∈ {0, 2, . . . , d} or
sup

x∈Ad+1

gn(x) ≤ −(M + γ + 1).

8



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 5, No. 2; 2016

Thus,

P
(

inf
x∈A1,gn∈Sn

gn(x) ≤ γ̃ for infinitely many n
)

≤
∑

i=0,2,...,d

P
 sup

gn∈Sn

inf
x∈Ai

gn(x) ≥ M + γ + 1 for infinitely many n


+P

(
inf

gn∈Sn

sup
x∈Ad+1

gn(x) ≤ −(M + γ + 1) for infinitely many n
)

≤
∑

i=0,2,...,d

P
 sup

gn∈Sn

inf
x∈Ai

∣∣∣gn(x)
∣∣∣ ≥ M + γ + 1 for infinitely many n


+P

 sup
gn∈Sn

inf
x∈Ad+1

∣∣∣gn(x)
∣∣∣ ≥ M + γ + 1 for infinitely many n


= 0

by (8), proving Lemma 3.

A.3 Proof of Lemma 4

First we prove that there exists a positive constant τ(c) such that for any y ∈ Hc and for any xi ∈ Ci (1 ≤ i ≤ d), where
Ci =

{
x ∈ [0, 1]d : ∥x − ei∥ ≤ τ(c)

}
, there exist nonnegative real numbers p1, . . . , pd such that p1x1 + · · · + pd xd = y and

that pi ≤ 1 for 1 ≤ i ≤ d.

To fill in the details, we note that we need to show that there exists a solution p = (p1, . . . , pd)T to the linear equation
Hp = y with 0 ≤ pi ≤ 1 for 1 ≤ i ≤ d, where H = (Hi j : 1 ≤ i, j ≤ d) is a square d × d matrix in which the ith column
is xi for 1 ≤ i ≤ d. Set ∥H∥∞ = max1≤i≤d

∑d
j=1

∣∣∣Hi j

∣∣∣ and note that ∥H − Id∥∞ ≤ τ(c), where Id is the d × d identity matrix.
Hence, for τ(c) < 1/2, H is invertible and we have

∥H−1∥∞ = ∥(Id + H − Id)−1∥∞ ≤ (1 − ∥H − Id∥∞)−1 ≤ 2.

Therefore,
∥p − y∥∞ = ∥H−1y − y∥∞ ≤ ∥H−1 − Id∥∞∥y∥∞ ≤ ∥H−1 − I−1

d ∥∞.
Since mapping a d × d matrix to its inverse matrix is continuous with respect to ∥ · ∥∞ in a neighborhood of H and
∥H − Id∥∞ ≤ τ(c), there exists a positive number τ(c) that guarantees ∥H−1 − I−1

d ∥ ≤ c/2. So, for such τ(c), ∥p− y∥∞ ≤ c/2.
Since y ∈ [c, 1 − c]d, p1, . . . , pd are nonnegative and each of them is less than or equal to one.

Now we prove Step 7. For 1 ≤ i ≤ d, r > 0, and gn ∈ Sn,

1
n

n∑
j=1

I
(
X j ∈ Ci,

∣∣∣gn(X j)
∣∣∣ ≤ r

)
≥ 1

n

n∑
j=1

I
(
X j ∈ Ci

)
− 1

n

n∑
j=1

I
(
X j ∈ Ci,

∣∣∣gn(X j)
∣∣∣ > r

)
.

However, Markov inequality and Step 2 imply that

sup
gn∈Sn

1
n

n∑
j=1

I
(
X j ∈ Ci,

∣∣∣gn(X j)
∣∣∣ > r

)
≤ sup

gn∈Sn

r−1 1
n

n∑
j=1

∣∣∣ĝn(X j)
∣∣∣ ≤ β/r

a.s. for n sufficiently large. Choose r0 so large that β/r0 ≤ γ , min{P(X1 ∈ Ci) : 1 ≤ i ≤ d}/2, then

inf
gn∈Sn

1
n

n∑
j=1

I
(
X j ∈ Ci,

∣∣∣gn(X j)
∣∣∣ ≤ r0

)
≥ γ

a.s. for n sufficiently large.

For each such n, there exists XI(i) ∈ Ci with 1 ≤ I(i) ≤ n and
∣∣∣gn(XI(i))

∣∣∣ ≤ r0. For each y ∈ [c, 1 − c]d and XI(i) ∈ Ci for
1 ≤ i ≤ d, there exist p1, . . . , pd such that

y = p1XI(1) + · · · + pdXI(d)

9
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and that 0 ≤ pi ≤ 1 for 1 ≤ i ≤ d. So, the convexity of gn yields

gn(y) ≤ p1gn(XI(1)) + · · · + pdgn(XI(d)) ≤ dr0,

proving that
sup

x∈[c,1−c]d ,gnSn

gn(x) ≤ dr0

a.s. for n sufficiently large.

A.4 Proof of Lemma 5

Let
C = { sup

gn∈Sn

inf
x∈B(z,δ)

(
f∗(x) − gn(x)

) ≤ ϵ for n sufficiently large}.

We will prove that P(C) = 1 by showing that P(A∩ B∩Cc) = ∅, where A and B will be defined subsequently. (It will also
be shown later that P(A) = P(B) = 1.)

Let

A =

1
n

n∑
i=1

I(Xi ∈ B(z, δ),−ϵ/2 ≤ εi ≤ 0) ≥ η/2 for n sufficiently large

 ,
where η , P(X1 ∈ B(z, δ),−ϵ/2 ≤ ε1 ≤ 0). By the strong law of large numbers, P(A) = 1.

On the other hand, the dominated convergence theorem guarantees that for Hν = [ν, 1 − ν]d,

E(I(X1 < Hν))→ 0

as ν→ 0 because I(X1 < Hν) ↓ 0 a.s. as ν ↓ 0. So, take ν0 small enough so that

E(I(X1 < Hν0 )) ≤ ϵη/(24(M + |γ̃|))

and note that
1
n

n∑
i=1

I(Xi < Hν0 ) ≤ ϵη/(12(M + |γ̃|))

a.s. for n sufficiently large by the strong law of large numbers. Also, by Step 6 and A5, we have ( f∗(Xi)− gn(Xi)− ϵ/2)+ ≤
M + |γ̃| a.s. for n sufficiently large, so

sup
gn∈Sn

1
n

n∑
i=1

( f∗(Xi) − gn(Xi) − ϵ/2)+I(Xi < Hν0 ) ≤ ϵη/12 (9)

a.s. for n sufficiently large.

Let h1, . . . , hm be an ϵη/12–net forHν0 . For each j ∈ {1, . . . ,m}, the strong law of large numbers guarantees that

1
n

n∑
i=1

( f∗(Xi) − h j(Xi) − ϵ/2)+(1/2 − I(εi ≤ 0))I(Xi ∈ Hν0 )→ 0

as n→ ∞ because the Xis and the εis are independent and the εi’s have zero median. So,

max
1≤ j≤m

∣∣∣∣∣∣∣1n
n∑

i=1

( f∗(Xi) − h j(Xi) − ϵ/2)+(1/2 − I(εi ≤ 0))I(Xi ∈ Hν0 )

∣∣∣∣∣∣∣
≤ ϵη/24 (10)

a.s. for n sufficiently large.

We let B be the set  sup
gn∈Sn

1
n

n∑
i=1

( f∗(Xi) − gn(Xi) − ϵ/2)+I(Xi < Hν0 ) ≤ ϵη/12 for n sufficiently large,

max
1≤ j≤m

∣∣∣∣∣∣∣1n
n∑

i=1

( f∗(Xi) − h j(Xi) − ϵ/2)+(1/2 − I(εi ≤ 0))I(Xi ∈ Hν0 )

∣∣∣∣∣∣∣ ≤ ϵη/24

for n sufficiently large
}
,

10
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then by (9) and (10) we have P(B) = 1.

Now, it remains to show that A∩ B∩Cc = ∅. Suppose, on the contrary, that ω ∈ A∩ B∩Cc. Then for such ω, there exists
g̃n ∈ Sn such that

inf
x∈B(z,δ)

( f∗(x) − g̃n(x)) > ϵ (11)

for infinitely many n.

Define kn : [0, 1]d → R by kn = max ( f∗(x) − ϵ/2, g̃n(x)) for x ∈ [0, 1]d. Since kn is convex, we must have

φn(kn) ≥ φn(g̃n),

or equivalently,

0 ≤ φn(kn) − φ(g̃n)

=
1
n

n∑
i=1

|Yi − kn(Xi)| −
1
n

n∑
i=1

|Yi − g̃n(Xi)|

=
1
n

∑
Xi∈Pn

|Yi − kn(Xi)| −
1
n

∑
Xi∈Pn

|Yi − g̃n(Xi)| ,

where Pn =
{
x ∈ [0, 1]d : f∗(x) − ϵ/2 ≥ g̃n(x)

}
.

We denote

Qi,n = {Xi ∈ Pn} ∩ {εi + ϵ/2 < − ( f∗(Xi) − g̃n(Xi) − ϵ/2)}
Ri,n = {Xi ∈ Pn} ∩ {− ( f∗(Xi) − g̃n(Xi) − ϵ/2) ≤ εi + ϵ/2 < 0}
S i,n = {Xi ∈ Pn} ∩ {0 ≤ εi + ϵ/2}

for 1 ≤ i ≤ n and observe that

0 ≤ φn(kn) − φ(g̃n)

=
1
n

∑
Xi∈Pn

|Yi − ( f∗(Xi) − ϵ/2)| − 1
n

∑
Xi∈Pn

|Yi − g̃n(Xi)|

=
1
n

∑
Xi∈Pn

|εi + ϵ/2| −
1
n

∑
Xi∈Pn

|εi + ϵ/2 + ( f∗(Xi) − g̃n(Xi) − ϵ/2)|

=
1
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2) I(Qi,n)

−1
n

n∑
i=1

(2εi + ϵ + f∗(Xi) − g̃n(Xi) − ϵ/2) I(Ri,n)

−1
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2) I(S i,n)

= −1
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+
(
1 − 2I(Qi,n)

) − 2
n

n∑
i=1

(εi + ϵ/2) I(Ri,n)

= −2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+
(
1/2 − I(Qi,n)

) − 2
n

n∑
i=1

(εi + ϵ/2) I(Ri,n)

= −2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+
(
I(εi ≤ 0) − I(Qi,n)

)
(12)

11
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−2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+ (1/2 − I(εi ≤ 0)) − 2
n

n∑
i=1

(εi + ϵ/2) I(Ri,n)

= −2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+
(
I(Ri,n) + I(−ϵ/2 ≤ εi ≤ 0)

)
−2

n

n∑
i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+ (1/2 − I(εi ≤ 0)) − 2
n

n∑
i=1

(εi + ϵ/2) I(Ri,n)

= −2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) + εi) I(Ri,n)

−2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+ I(−ϵ/2 ≤ εi ≤ 0)

−2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+ (1/2 − I(εi ≤ 0))

≤ −2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+ I(−ϵ/2 ≤ εi ≤ 0)

−2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+ (1/2 − I(εi ≤ 0)) = I + II, say. (13)

The last inequality follows because f∗(Xi) − g̃n(Xi) + εi ≥ 0 on Ri,n.

From (11) and the fact that ω ∈ A, we have

I ≤ −1
n

n∑
i=1

ϵI(Xi ∈ B(z, δ),−ϵ/2 ≤ εi ≤ 0) ≤ −ϵη/2 (14)

for infinitely many n.

On the other hand, for each 1 ≤ j ≤ m,

II = −(2/n)
n∑

i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+ (1/2 − I(εi ≤ 0))

= −(2/n)
n∑

i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+ (1/2 − I(εi ≤ 0))I(Xi < Hν0 )

−(2/n)
n∑

i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+ (1/2 − I(εi ≤ 0))I(Xi ∈ Hν0 )

≤ −(2/n)
n∑

i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+ (1/2 − I(εi ≤ 0))I(Xi < Hν0 )

−(2/n)
n∑

i=1

(
f∗(Xi) − h j(Xi) − ϵ/2

)+
(1/2 − I(εi ≤ 0))I(Xi ∈ Hν0 )

+(2/n)
n∑

i=1

∣∣∣h j(Xi) − g̃n(Xi)
∣∣∣ |1/2 − I(εi ≤ 0)| I(Xi ∈ Hν0 )

because − (a + b)+c ≤ −a+c + |b||c| for a, b, c ∈ R

≤ (2/n)
n∑

i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+ |1/2 − I(εi ≤ 0)| I(Xi < Hν0 )

+2 max
1≤ j≤m

∣∣∣∣∣∣∣∣1n
∑

Xi∈Hν0

(
f∗(Xi) − h j(Xi) − ϵ/2

)+
(1/2 − I(εi ≤ 0))

∣∣∣∣∣∣∣∣
+(2/n)

n∑
i=1

sup
x∈Hν0

∣∣∣h j(x) − g̃n(x)
∣∣∣ |1/2 − I(εi ≤ 0)| I(Xi ∈ Hν0 ). (15)

12
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Since (15) holds for any j ∈ {1, . . . ,m},

II ≤ (2/n)
n∑

i=1

( f∗(Xi) − g̃n(Xi) − ϵ/2)+ |1/2 − I(εi ≤ 0)| I(Xi < Hν0 )

+2 max
1≤ j≤m

∣∣∣∣∣∣∣∣1n
∑

Xi∈Hν0

(
f∗(Xi) − h j(Xi) − ϵ/2

)+
(1/2 − I(εi ≤ 0))

∣∣∣∣∣∣∣∣
+ϵη/12

≤ ϵη/12 + ϵη/12 + ϵη/12 because ω ∈ B

= ϵη/4 (16)

a.s. for n sufficiently large.

Combination of (13), (14), and (16) gives 0 ≤ φ(kn) − φ(g̃n) ≤ −ϵη/4 for infinitely many n, which is a contradiction. This
proves that A ∩ B ∩Cc = ∅ and that P(C) = 1.

A.5 Proof of Lemma 6

Let
C = { sup

gn∈Sn

inf
x∈B(z,δ)

(
gn(x) − f∗(x)

) ≤ ϵ for n sufficiently large}.

We will prove that P(C) = 1 by showing that P(A∩ B∩Cc) = ∅, where A and B will be defined subsequently. (It will also
be shown later that P(A) = P(B) = 1.)

Let

A =

1
n

n∑
i=1

I(Xi ∈ B(z, δ), 0 < εi < ϵ/2) ≥ η/2 for n sufficiently large

 ,
where η , P(X1 ∈ B(z, δ), 0 < ε1 < ϵ/2). By the strong law of large numbers, P(A) = 1.

On the other hand, the strong law of large numbers and A4 ensure that

1
n

n∑
i=1

(1/2 − I(εi > 0)) =
1
n

n∑
i=1

(I(εi ≤ 0) − 1/2) ≥ −η/16

a.s. for n sufficiently large. Also, similar arguments leading to (16) ensure that

inf
gn∈Sn

1
n

n∑
i=1

(
f∗(Xi) − gn(Xi) + ϵ

)+ (1/2 − I(εi ≤ 0)) ≥ −ϵη/16

a.s. for n sufficiently large.

So, if we let

B =

1
n

n∑
i=1

(1/2 − I(εi > 0)) ≥ −η/16 for n sufficiently large

inf
gn∈Sn

1
n

n∑
i=1

(
f∗(Xi) − gn(Xi) + ϵ

)+ (1/2 − I(εi < 0)) ≥ −ϵη/16

for n sufficiently large
}
,

then P(B) = 1.

Now, it remains to show that A∩ B∩Cc = ∅. Suppose, on the contrary, that ω ∈ A∩ B∩Cc. Then for such ω, there exists
g̃n ∈ Sn such that

inf
x∈B(z,δ)

(g̃n(x) − f∗(x)) > ϵ (17)

for infinitely many n.

13
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Define kn : [0, 1]d → R by kn(x) = max(g̃n(x) − ϵ, f∗(x)) for x ∈ [0, 1]d. Since kn is convex, we must have

φn(kn) ≥ φn(g̃n),

or equivalently,

0 ≤ φn(kn) − φn(g̃n)

=
1
n

n∑
i=1

|Yi − kn(Xi)| −
1
n

n∑
i=1

|Yi − g̃n(Xi)|

=
1
n

∑
Xi∈Pn

|Yi − g̃n(Xi) + ϵ | −
1
n

∑
Xi∈Pn

|Yi − g̃n(Xi)|

+
1
n

∑
Xi∈Pc

n

|εi| −
1
n

∑
Xi∈Pc

n

|εi + f∗(Xi) − g̃n(Xi)|

= I + II + III + IV, say, (18)

where Pn =
{
x ∈ [0, 1]d : g̃n(x) − ϵ ≥ f∗(x)

}
.

We denote

Qi,n = {Xi ∈ Pn} ∩ {εi ≥ − ( f∗(Xi) − g̃n(Xi))}
Ri,n = {Xi ∈ Pn} ∩ {− ( f∗(Xi) − g̃n(Xi) + ϵ) ≤ εi < − ( f∗(Xi) − g̃n(Xi))}
S i,n = {Xi ∈ Pn} ∩ {εi < − ( f∗(Xi) − g̃n(Xi) + ϵ)}

and observe that

I + II =
1
n

∑
Xi∈Pn

|Yi − g̃n(Xi) + ϵ| −
1
n

∑
Xi∈Pn

|Yi − g̃n(Xi)|

=
1
n

∑
Xi∈Pn

| f∗(Xi) − g̃n(Xi) + εi + ϵ | −
1
n

∑
Xi∈Pn

| f∗(Xi) − g̃n(Xi) + εi|

=
1
n

n∑
i=1

ϵI(Qi,n) +
1
n

n∑
i=1

(2 f∗(Xi) − 2g̃n(Xi) + 2εi + ϵ) I(Ri,n) − 1
n

n∑
i=1

ϵI(S i,n)

= −1
n

∑
Xi∈Pn

ϵ
(
1 − 2I(S c

i,n)
)
+

2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) + εi) I(Ri,n)

= −2
n

∑
Xi∈Pn

ϵ
(
1/2 − I(S c

i,n)
)
+

2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) + εi) I(Ri,n)

= −2
n

∑
Xi∈Pn

ϵ
(
I(εi > 0) − I(S c

i,n)
)
− 2

n

∑
Xi∈Pn

ϵ (1/2 − I(εi > 0))

+
2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) + εi) I(Ri,n)

= −2
n

∑
Xi∈Pn

ϵI (0 < εi < − ( f∗(Xi) − g̃n(Xi) + ϵ)) −
2
n

∑
Xi∈Pn

ϵ (1/2 − I(εi > 0))

+
2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) + εi) I(Ri,n)

≤ −2
n

∑
Xi∈Pn

ϵI (0 < εi < − ( f∗(Xi) − g̃n(Xi) + ϵ)) −
2
n

∑
Xi∈Pn

ϵ (1/2 − I(εi > 0))

+
2
n

∑
Xi∈Pn

( f∗(Xi) − g̃n(Xi) + εi)

· I(− ( f∗(Xi) − g̃n(Xi) + ϵ) ≤ εi < − ( f∗(Xi) − g̃n(Xi) + ϵ/2))
(19)
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≤ −2
n

∑
Xi∈Pn

ϵI (0 < εi < − ( f∗(Xi) − g̃n(Xi) + ϵ)) −
2
n

∑
Xi∈Pn

ϵ (1/2 − I(εi > 0))

− 1
n

∑
Xi∈Pn

ϵI(− ( f∗(Xi) − g̃n(Xi) + ϵ) ≤ εi < − ( f∗(Xi) − g̃n(Xi) + ϵ/2))

≤ −1
n

∑
Xi∈Pn

ϵI (0 < εi < − ( f∗(Xi) − g̃n(Xi) + ϵ/2))

− 2
n

∑
Xi∈Pn

ϵ (1/2 − I(εi > 0))

≤ −1
n

∑
Xi∈Pn

ϵI (0 < εi < ϵ/2) − 2
n

∑
Xi∈Pn

ϵ (1/2 − I(εi > 0)) . (20)

On the other hand, to handle III + IV, we consider the cases when 1) 0 ≤ f∗(Xi) − g̃n(Xi) and 2) −ϵ < f∗(Xi) − g̃n(Xi) < 0.
For case 1), we consider the three cases εi ≤ −( f∗(Xi) − g̃n(Xi)), −( f∗(Xi) − g̃n(Xi)) < εi ≤ 0, and 0 < εi. For case 2), we
consider the three cases εi ≤ 0, 0 < εi ≤ −( f∗(Xi)− g̃n(Xi)), and −( f∗(Xi)− g̃n(Xi)) < εi. This yields the following relation:

III + IV

=
1
n

∑
Xi∈Pc

n

|εi| −
1
n

∑
Xi∈Pc

n

|εi + f∗(Xi) − g̃n(Xi)|

= −2
n

∑
Xi∈Pc

n

( f∗(Xi) − g̃n(Xi) + εi)

· I (0 ≤ f∗(Xi) − g̃n(Xi),− ( f∗(Xi) − g̃n(Xi)) < εi ≤ 0)

− 2
n

∑
Xi∈Pc

n

( f∗(Xi) − g̃n(Xi))

· ((1/2)I(0 ≤ f∗(Xi) − g̃n(Xi)) − I (0 ≤ f∗(Xi) − g̃n(Xi), εi ≤ 0))

+
2
n

∑
Xi∈Pc

n

( f∗(Xi) − g̃n(Xi) + εi)

· I(−ϵ < f∗(Xi) − g̃n(Xi) < 0, 0 < εi ≤ − ( f∗(Xi) − g̃n(Xi)))

+
2
n

∑
Xi∈Pc

n

( f∗(Xi) − g̃n(Xi))

· ((1/2)I (−ϵ < f∗(Xi) − g̃n(Xi) < 0) − I (−ϵ < f∗(Xi) − g̃n(Xi) < 0, εi > 0)).

Since the first and the third terms in the above equations are always negative, we have

III + IV

≤ −2
n

∑
Xi∈Pc

n

( f∗(Xi) − g̃n(Xi))

· ((1/2)I(0 ≤ f∗(Xi) − g̃n(Xi)) − I (0 ≤ f∗(Xi) − g̃n(Xi), εi ≤ 0))

+
2
n

∑
Xi∈Pc

n

( f∗(Xi) − g̃n(Xi))

· ((1/2)I (−ϵ < f∗(Xi) − g̃n(Xi) < 0) − I (−ϵ < f∗(Xi) − g̃n(Xi) < 0, εi > 0))

= −2
n

∑
Xi∈Pc

n

( f∗(Xi) − g̃n(Xi) + ϵ)

· ((1/2)I(0 ≤ f∗(Xi) − g̃n(Xi)) − I (0 ≤ f∗(Xi) − g̃n(Xi), εi ≤ 0))

+
2
n

∑
Xi∈Pc

n

ϵ
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· ((1/2)I(0 ≤ f∗(Xi) − g̃n(Xi)) − I (0 ≤ f∗(Xi) − g̃n(Xi), εi ≤ 0))

+
2
n

∑
Xi∈Pc

n

( f∗(Xi) − g̃n(Xi) + ϵ)

· ((1/2)I (−ϵ < f∗(Xi) − g̃n(Xi) < 0) − I (−ϵ < f∗(Xi) − g̃n(Xi) < 0, εi > 0))

− 2
n

∑
Xi∈Pc

n

ϵ

· ((1/2)I (−ϵ < f∗(Xi) − g̃n(Xi) < 0) − I (−ϵ < f∗(Xi) − g̃n(Xi) < 0, εi > 0))

= −2
n

∑
Xi∈Pc

n

( f∗(Xi) − g̃n(Xi) + ϵ)

· ((1/2)I(0 ≤ f∗(Xi) − g̃n(Xi)) − I (0 ≤ f∗(Xi) − g̃n(Xi), εi ≤ 0))

− 2
n

∑
Xi∈Pc

n

ϵ

· ((1/2)I(0 ≤ f∗(Xi) − g̃n(Xi)) − I (0 ≤ f∗(Xi) − g̃n(Xi), εi > 0))

− 2
n

∑
Xi∈Pc

n

( f∗(Xi) − g̃n(Xi) + ϵ)

· ((1/2)I (−ϵ < f∗(Xi) − g̃n(Xi) < 0) − I (−ϵ < f∗(Xi) − g̃n(Xi) < 0, εi ≤ 0))

− 2
n

∑
Xi∈Pc

n

ϵ

· ((1/2)I (−ϵ < f∗(Xi) − g̃n(Xi) < 0) − I (−ϵ < f∗(Xi) − g̃n(Xi) < 0, εi > 0)).

Combining the first and third terms in the above expression and combining the second and fourth terms in the above
expression yield

III + IV

≤ −2
n

∑
Xi∈Pc

n

( f∗(Xi) − g̃n(Xi) + ϵ)

· ((1/2)I(−ϵ < f∗(Xi) − g̃n(Xi)) − I (−ϵ < f∗(Xi) − g̃n(Xi), εi ≤ 0))

− 2
n

∑
Xi∈Pc

n

ϵ

· ((1/2)I(−ϵ < f∗(Xi) − g̃n(Xi)) − I (−ϵ < f∗(Xi) − g̃n(Xi), εi > 0))

= −2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) + ϵ)+ (1/2 − I(εi ≤ 0)) − 2
n

∑
Xi∈Pc

n

ϵ(1/2 − I(εi > 0)). (21)

From (20) and (21), we obtain

I + II + III + IV

≤ −1
n

∑
Xi∈Pn

ϵI (0 < εi < ϵ/2) − 2
n

∑
Xi∈Pn

ϵ (1/2 − I(εi > 0))

−2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) + ϵ)+ (1/2 − I(εi ≤ 0))

−2
n

∑
Xi∈Pc

n

ϵ(1/2 − I(εi > 0))

= −1
n

n∑
i=1

ϵI (Xi ∈ Pn, 0 < εi < ϵ/2) − 2
n

n∑
i=1

ϵ (1/2 − I(εi > 0))

−2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) + ϵ)+ (1/2 − I(εi ≤ 0)). (22)
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By (17),

−1
n

n∑
i=1

ϵI (Xi ∈ Pn, 0 < εi < ϵ/2) ≤ −1
n

n∑
i=1

ϵI (Xi ∈ B(z, δ), 0 < εi < ϵ/2)

for infinitely many n and because ω ∈ A,

−1
n

n∑
i=1

ϵI (Xi ∈ Pn, 0 < εi < ϵ/2) ≤ −ϵη/2 (23)

for infinitely many n. However, because ω ∈ B,

− 2
n

n∑
i=1

ϵ (1/2 − I(εi > 0)) − 2
n

n∑
i=1

( f∗(Xi) − g̃n(Xi) + ϵ)+ (1/2 − I(εi ≤ 0)) ≤ ϵη/4 (24)

for n sufficiently large. Combination of (18), (22), (23), and (24) gives 0 ≤ φ(kn) − φ(g̃n) = I + II + III + IV ≤ −ϵη/4 for
infinitely many n, which is a contradiction. This proves that A ∩ B ∩Cc = ∅ and that P(C) = 1.

A.6 Proof of Theorem 2

It suffices to prove the second part of Theorem 2. The first part of Theorem 2 can be justified similarly to the second part.
Suppose that f∗ is differentiable on [c, 1 − c]d. Take c0 < c and let

A =

 sup
x∈[c0,1−c0]d ,gn∈Sn

∣∣∣gn(x) − f∗(x)
∣∣∣→ 0 as n→ ∞

 ,
then P(A) = 1 by Theorem 1. We will show that P(B) = 1, where

B =

 sup
x∈[c,1−c]d ,ξ∈∂gn(x),gn∈Sn

∥ξ − ∇ f∗(x)∥ → 0 as n→ ∞
 ,

by proving that A ∩ Bc = ∅.Suppose, on the contrary, that ω ∈ A ∩ Bc exists. For such an ω, there exists ϵ > 0,
xn ∈ [c, 1 − c]d, g̃n ∈ Sn and ξn ∈ ∂g̃n(xn) such that

∥ξn − ∇ f∗(xn)∥ > ϵ

for infinitely many n. Furthermore, there exists an index i ∈ {1, . . . , d} such that∣∣∣eT
i ξn − eT

i ∇ f∗(xn)
∣∣∣ > ϵ/d (25)

for infinitely many n, where ei is the ith unit vector. Equation (25) implies that either

eT
i ξn > eT

i ∇ f∗(xn) + ϵ/d (26)

or

eT
i ξn < eT

i ∇ f∗(xn) − ϵ/d (27)

holds. We first consider the case where (26) holds. Since [c, 1 − c]d is compact, there exists a subsequence (xnk : 1 ≤ k)
that converges to a point x0 in [c, 1 − c]d. Passing to subsequences if necessary, for any λ > 0 small enough that
x0 + λei ∈ [(c + c0)/2, 1 − (c + c0)/2]d, we have xn + λei ∈ [c0, 1 − c0]d for all sufficiently large n and

eT
i ξn ≤ (g̃n(xn + λei) − g̃n(xn)) /λ. (28)

Since ω ∈ A and the g̃ns are continuous on [c0, 1 − c0]d, g̃n(xn + λei) tends to f∗(x0 + λei) and g̃n(xn) tends to f∗(x0)
as n → ∞. By Theorem 25.5 on p. 246 of [?], ∇ f∗ is continuous on [c, 1 − c]d, and hence, ∇ f∗(xn) tends to ∇ f∗(x0).
Therefore,

eT
i ∇ f∗(x0) + ϵ/d = lim

n→∞
eT

i ∇ f∗(xn) + ϵ/d

≤ lim sup
n→∞

eT
i ξn by (26)

≤ lim
n→∞

(g̃n(xn + λei) − g̃n(xn)) /λ by (28)

= ( f∗(x0 + λei) − f∗(x0)) /λ. (29)
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This is supposed to hold for every sufficiently small λ > 0. However

eT
i ∇ f∗(x0) = lim

λ↓0
( f∗(x0 + λei) − f∗(x0)) /λ,

which contradicts (29). Similar arguments can be applied to reach a contradiction in the case of (27). Hence, Theorem 2
is proved.
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