Some New Characterizations of Markov-Bernoulli Geometric Distribution Related to Random Sums
- M. Gharib
- M. Ramadan
- Kh. A. H. Al-Ajmi
Abstract
The Markov-Bernoulli geometric distribution is obtained when a generalization, as a Markov process, of the independent Bernoulli sequence of random variables, is introduced. In this paper, new characterizations of the Markov-Bernoulli geometric distribution, as the distribution of the summation index of randomly truncated non-negative integer valued random variables, are given in terms of moment relations of the sum and summands. The achieved results generalize the corresponding characterizations concerning the usual geometric distribution.
- Full Text: PDF
- DOI:10.5539/ijsp.v3n3p138
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org