A Bayesian Approach for Large Asset Allocation
- Mihnea S. Andrei
- John S. J. Hsu
Abstract
The Black-Litterman model combines investor’s personal views with historical data and gives optimal portfolio weights. In (Andrei & Hsu, 2020), they reviewed the original Black-Litterman model and modified it in order to fit it into a Bayesian framework, when a certain number of assets is considered. They used the idea by (Leonard & Hsu, 1992) for a multivariate normal prior on the logarithm of the covariance matrix. When implemented and applied to a large number of assets such as all the S&P500 companies, they ran into memory allocation and running time issues. In this paper, we reduce the dimensions by considering Bayesian factor models, which solve the asset allocation problems for a large number of assets. In addition, we will conduct sensitivity analysis for the confidence levels that the investors have to input.
- Full Text: PDF
- DOI:10.5539/ijsp.v10n1p58
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org