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Abstract

The Black-Litterman model combines investor’s personal views with historical data and gives optimal portfolio weights.
In (Andrei & Hsu, 2020), they reviewed the original Black-Litterman model and modified it in order to fit it into a
Bayesian framework, when a certain number of assets is considered. They used the idea by (Leonard & Hsu, 1992) for
a multivariate normal prior on the logarithm of the covariance matrix. When implemented and applied to a large number
of assets such as all the S &P500 companies, they ran into memory allocation and running time issues. In this paper,
we reduce the dimensions by considering Bayesian factor models, which solve the asset allocation problems for a large
number of assets. In addition, we will conduct sensitivity analysis for the confidence levels that the investors have to
input.

Keywords: Black-Litterman, covariance matrix, investor’s views prior, logarithmic covariance prior, portfolio allocation,
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1. Background Introduction

1.1 Black-Litterman Asset Allocation Model

The Black-Litterman asset allocation model developed by Black and Litterman in 1992 has been widely used for decades
and it is presented in more detail in the paper by (He & Litterman, 2002). Suppose that m assets in the market are
considered. The returns of those assets r = (r1, r2, . . . , rm)T follow a multivariate normal distribution with mean µ and
covariance matrix Σ. That is

r ∼ Nm(µ,Σ) (1)

Black and Litterman proposed the following CAPM (Capital Asset Pricing Model) prior for the mean of the return:

µ ∼ Nm(π, τΣ) (2)

where π is the equilibrium risk parameter and τ indicates the uncertainty of the CAPM prior. In addition to the CAPM
prior, they also take investor’s views into consideration. Suppose that the investor has k views. His or her views can be
expressed in the equation:

Pµ ∼ Nk(q0,Ω) (3)

where the matrix P is a k ×m matrix, q0 is a k × 1 vector, and Ω is a k × k matrix, usually diagonal. Each row in P and q0
represents a personal view.

2. A Bayesian Approach for Large Asset Allocation, When Historical Data is Unavailable

2.1 Introduction

Black and Litterman derived the corresponding optimal portfolio weights and these weights can be computed by in-
putting all involved parameters into their probability model. Along the same lines, (Andrei & Hsu, 2020) considered a
Bayesian statistical model instead for asset allocation for a certain fixed number of assets. They assumed that the n returns
r1, r2, ..., rn are independent, where each ri is a vector containing the returns of m assets, which are normally distributed
as in equation (1) for i ∈ {1, 2, ..., n}. The priors for µ and Σ are assumed to be independent, where the prior on µ can
be expressed as the investor’s views in equation (3). Following (Leonard & Hsu, 1992), they considered a multivariate
normal prior for the logarithm of the covariance matrix A = log(Σ). The corresponding covariance matrix involved in the
multivariate normal distribution is of size 1

2 m(m+1)× 1
2 m(m+1). Therefore, if one considers the whole S &P500, the size

of this random matrix in terms of memory would be of around 106GB. Because of this issue, we decided to incorporate
factors in order to reduce the dimension. Hence, as we will see in the following sections, after applying factor models,
we will incorporate a prior on the covariance matrix of the common factors instead of incorporating a prior directly on
the covariance matrix of the returns. The dimension of the covariance matrix of the common factors is q × q, where q
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represents the number of common factors, which is much smaller than m × m, the dimension of the covariance matrix of
the returns, where m is the number of assets.

Our work consists of combining the two Bayesian versions for the Black-Litterman model from (Andrei & Hsu, 2020)
with the work of (Lee et al., 2007) and the work of (Lee & Shi, 2000).

2.2 Assumptions

We consider a factor model on n returns with m assets each and k investor’s views:

ri = µ + Λfi + ei

Where we introduced the following notation:

• µ is a vector of expected returns for each of the m assets

• Λ is the loading matrix from the factor model

• fi are common factors

• ei are unobserved errors which satisfy the following assumption:

ei|Ψ
iid.
∼ Nm(0,Ψ) for all i ∈ {1, 2, ..., n} and Ψ = diag(Ψ1, ...,Ψm)

(1) Hence, from the above factor model, we obtain that the conditional distribution of the returns ri, given the factor fi

is:

ri|µ, fi,Λ,Ψ ∼ Nm(µ + Λfi,Ψ) for all i ∈ {1, 2, ..., n}

where fi|Φ
iid.
∼ Nq(0,Φ) for all i ∈ {1, 2, ..., n}

(2) Next, we consider a two-stage prior for Λ and Ψ:

Λ j|Ψ j
indep.
∼ Nq(Λ0 j,Ψ jH j)

Ψ j
indep.
∼ IG(α j, β j) for all j ∈ {1, 2, ...,m}

Here, ΛT
j is the jth row in Λ.

(3) Following the Black-Litterman approach in equation (3), we include a prior on the mean of the returns, which is
projected through the investor’s views:

Pµ ∼ Nk(q0,Ω)

(4) Following (Leonard & Hsu, 1992), we consider a multivariate normal prior for the logarithm of the covariance
A = log(Φ) =

(
ai j

)
i, j={1,2,...,q}

. Let α =
[
α1, ..., αq, αq+1, ..., αd

]
= Vec∗(A) =

[
a11, a22, ..., aqq|a12, a23, ..., aq−1q|...|a1q

]
,

where d = 1
2 q(q + 1). Suppose that the variance related components α1, ..., αq and covariance related components

αq+1, ..., αd are independent. We further assume that the variance related components follow independent normal
distributions, each with mean θ1 and variance σ2

1 and the covariance related components follow independent normal
distributions, each with mean θ2 and variance σ2

2. That is,

α|θ,∆ ∼ Nd(Jθ,∆)

where J =

[
1q 0
0 1d−q

]
, θ =

[
θ1
θ2

]
and ∆ =

[
σ2

1Iq 0
0 σ2

2Id−q

]
,

where 1q is a q dimensional vector of ones and Iq is a q × q identity matrix. Further, suppose that only vague
information about θ1, θ2, σ

2
1, σ

2
2 is available. That is π(θ1, θ2) ∝ 1 and π(σ2

1, σ
2
2) ∝ 1.
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Therefore, all the model assumptions are:

ri|µ, fi,Λ,Ψ ∼ Nm(µ + Λfi,Ψ), for all i ∈ {1, 2, ..., n}

fi|Φ
iid.
∼ Nq(0,Φ), for all i ∈ {1, 2, ..., n}

Pµ ∼ Nk(q0,Ω)
α|θ,∆ = Vec∗(log(Φ))|θ,∆ ∼ N(Jθ,∆)

π(θ1, θ2) ∝ 1

π(σ2
1, σ

2
2) ∝ 1

Λ j|Ψ j
iid.
∼ Nq(Λ0 j,Ψ jH j)

Ψ j
iid.
∼ IG(α j, β j), for all j ∈ {1, 2, ...,m}

(4)

2.3 Posterior Distributions

(a) Approximate conditional posterior for α given µ, σ2
1, σ

2
2, r1, ..., rn.

Following (Andrei & Hsu, 2020), with the common factors playing the role of the returns, we can approximate the
conditional posterior distribution of α given σ2

1 and σ2
2 with a normal distribution that has as mean the vector α∗ and

covariance matrix (Q + G)−1. Hence, we obtain that:

α|· ≈∼ N(α∗, (Q + G)−1), where α∗ = (Q + G)−1Qλ,

G =
(
Id − J(JT∆−1J)−1JT∆−1

)T
∆−1

(
Id − J(JT∆−1J)−1JT∆−1

)
(5)

and the matrix Q is computed in the following way. If we let ei, di be the ith normalized eigenvector with its corresponding
eigenvalue of S = 1

n (ri − µ)(ri − µ)T , respectively, then hi j is obtained by looking at the equation Vec∗(log(Φ))T hi j =

eT
i log(Φ)e j and identifying the coefficients of the entries in the log(Φ) matrix. With those hi j, we can finally compute Q:

Q =
n
2

q∑
i=1

hiihT
ii + n

q∑
i< j

ξi jhi jhT
i j, where

ξi j =
(di − d j)2

did j(log(di) − log(d j))2 (6)

(b) Conditional posteriors for σ2
1 and σ2

2 given α

Following (Andrei & Hsu, 2020), with the number of stocks m replaced by the number of common factors q and d =
1
2 q(q + 1):

σ2
1|· ∼ IG

q − 3
2

,
1
2

q∑
i=1

(αi − αv)2

 , where αv =
1
q

q∑
i=1

αi

σ2
2|· ∼ IG

d − q − 3
2

,
1
2

d∑
i=q+1

(αi − αc)2

 , where αc =
1

d − q

d∑
i=q+1

αi

(c) Conditional distribution for fi given µ,Λ,Ψ,Φ, r1, ..., rn.

Let us find now the updated density for fi:

π(fi|·) ∝ exp
{
−

1
2

(
(Λfi − (ri − µ))T Ψ−1 (Λfi − (ri − µ)) + fT

i Φ
−1fi

)}

Let us focus on the term in the exponential. For simplicity of formulas, let us drop the exp {·} and the − 1
2 factor:

fT
i Λ

TΨ−1Λfi − 2fT
i Λ

TΨ−1(ri − µ) + (ri − µ)TΨ−1(ri − µ) + fT
i Φ

−1fi

= fT
i (ΛTΨ−1Λ +Φ−1)fi − 2(ri − µ)TΨ−1Λfi + (ri − µ)TΨ−1(ri − µ)

We will repeatedly make use of the following Lemma:
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Lemma 1. Let M be a symmetric and invertible matrix, then the following identity holds:

xT Mx − 2bT x = (x −M−1b)T M(x −M−1b) − bT M−1b

To update the density for fi, we first apply Lemma 1 for x = fi,M = ΛTΨ−1Λ +Φ−1,bT = (ri − µ)TΨ−1Λ and we obtain
that the term in the exponential for the posterior of fi multiplied by − 1

2 is:

[
fi −

(
ΛTΨ−1Λ +Φ−1

)−1
ΛTΨ−1 (ri − µ)

]T (
ΛTΨ−1Λ +Φ−1

)
×

[
fi −

(
ΛTΨ−1Λ +Φ−1

)−1
ΛTΨ−1 (ri − µ)

]
− (ri − µ)T Ψ−1Λ

(
ΛTΨ−1Λ +Φ−1

)−1
ΛTΨ−1 (ri − µ)

Here, only the first term depends on fi and we actually observe that it is the kernel of a normal distribution. Therefore, we
obtain that:

fi|·
indep.
∼ Nq

((
ΛTΨ−1Λ +Φ−1

)−1
ΛTΨ−1 (ri − µ) ,

(
ΛTΨ−1Λ +Φ−1

)−1
)

(d) Conditional posterior for µ, given Λ, fi,Φ

Next, we are ready to find the posterior for µ:

π (µ|Λ, fi,Φ) ∝ exp

−1
2

n∑
i=1

(ri − Λfi − µ)T Ψ−1 (ri − Λfi − µ)


× exp

{
−

1
2

(Pµ − q0)T Ω−1 (Pµ − q0)
}

Let r∗i = ri − Λfi, for all i ∈ {1, 2, ..., n} and r∗ = 1
n
∑n

i=1 r∗i = 1
n
∑n

i=1 (ri − Λfi). If we focus only on the first exponential,
we can apply the typical trick of subtracting and adding r∗ and we obtain that the term in the first exponential is equal to:

n∑
i=1

(
r∗i − µ

)T
Ψ−1 (

r∗i − µ
)

=

n∑
i=1

(
r∗i − r∗

)T
Ψ−1 (

r∗i − r∗
)

+ n
(
r∗ − µ

)T
Ψ−1 (

r∗ − µ
)

Therefore, by using Lemma 1, we obtain that the posterior for µ is:

π (µ|·) ∝ exp
{
−

1
2

n
(
r∗ − µ

)T
Ψ−1 (

r∗ − µ
)}

exp
{
−

1
2

(Pµ − q0)T Ω−1 (Pµ − q0)
}

∝ exp
{
−

1
2

(
µT

(
nΨ−1 + PTΩ−1P

)
µ − 2

(
r∗T nΨ−1 + qT

0Ω
−1P

)
µ
)}

∝ exp
{
−

1
2

(
µ −

(
nΨ−1 + PTΩ−1P

)−1 (
nΨ−1r∗ + PTΩ−1q0

))T (
nΨ−1 + PTΩ−1P

)
×

(
µ −

(
nΨ−1 + PTΩ−1P

)−1 (
nΨ−1r∗ + PTΩ−1q0

)) }
The conditional distribution of µ given Λ, fi,Φ, r is a multivariate normal. That is

µ|· ∼ Nm

((
nΨ−1 + PTΩ−1P

)−1 (
nΨ−1r∗ + PTΩ−1q0

)
,
(
nΨ−1 + PTΩ−1P

)−1
)
,

where r∗ =
1
n

n∑
i=1

(ri − Λfi)

(e) Posterior for Λ,Ψ

By looking at the assumptions in equations (4) and by collecting the terms depending on Λ and Ψ, we obtain:

61



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 10, No. 1; 2021

π(Λ,Ψ|θ̃) ∝
m∏

j=1

Ψ− n
2−α j−1

j |Ψ jH j |
− 1

2

 exp

−
m∑

j=1

β j

Ψ j


× exp

−1
2

n∑
i=1

(ri − µ − Λfi)T Ψ−1 (ri − µ − Λfi)


× exp

−1
2

m∑
j=1

(
Λ j − Λ0 j

)T 1
Ψ j

H−1
j

(
Λ j − Λ0 j

) (7)

Let us first focus our attention on the last two exponentials. We notice that one sum is over columns (the one over i), while
the other sum is over the rows (the one over j). However, we can write the sum over i as a sum over j in the following
way:

n∑
i=1

(ri − µ − Λfi)T Ψ−1 (ri − µ − Λfi) =

n∑
i=1

m∑
j=1

(
r ji − µ j − fT

i Λ j

)2 1
Ψ j

=

m∑
j=1

(
rT

j· − µ j1 − FTΛ j

)T 1
Ψ j

(
rT

j· − µ j1 − FTΛ j

)
Here, we introduced the following notation:

• r j· = the jth row in the matrix of returns R =
[
r1 ... rn

]
• F =

[
f1 ... fn

]
is the matrix in which we have as columns the common factors.

• µ j is the jth entry in the vector of means µ.

• Λ j is the jth row in the matrix Λ.

Since we managed to change the summation so that it is with respect to the rows, we can now combine the last two
exponentials from the joint posterior density presented above:

π
(
Λ j,Ψ j|·

)
∝

Ψ− n
2−α j−1

j |Ψ jH j |
− 1

2

 exp
{
−
β j

Ψ j

}
× exp

{
−

1
2

(
rT

j· − µ j1 − FTΛ j

)T 1
Ψ j

(
rT

j· − µ j1 − FTΛ j

)}
× exp

{
−

1
2

(
Λ j − Λ0 j

)T 1
Ψ j

H−1
j

(
Λ j − Λ0 j

)}
(8)

(e1) Posterior for Λ

Only the last two exponentials in equation (8) depend on Λ and for simplicity we omit the − 1
2 factor:(

rT
j· − µ j1 − FTΛ j

)T 1
Ψ j

(
rT

j· − µ j1 − FTΛ j

)
+

(
Λ j − Λ0 j

)T 1
Ψ j

H−1
j

(
Λ j − Λ0 j

)
= ΛT

j F
1

Ψ j
FTΛ j + ΛT

j
1

Ψ j
H−1

j Λ j − 2ΛT
j F

1
Ψ j

(
rT

j· − µ j1
)
− 2ΛT

j
1

Ψ j
H−1

j Λ0 j

+
(
rT

j· − µ j1
)T 1

Ψ j

(
rT

j· − µ j1
)

+ ΛT
0 j

1
Ψ j

H−1
j Λ0 j

= ΛT
j

1
Ψ j

(
FFT + H−1

j

)
Λ j − 2ΛT

j
1

Ψ j

(
F

(
rT

j· − µ j1
)

+ H−1
j Λ0 j

)
+

(
rT

j· − µ j1
)T 1

Ψ j

(
rT

j· − µ j1
)

+ΛT
0 j

1
Ψ j

H−1
j Λ0 j

62



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 10, No. 1; 2021

Since the only terms that depend on Λ j are the first two, for now we can focus only on them and they will give us the
posterior. We can apply again Lemma 1 for x = Λ j, M = 1

Ψ j
(FFT + H−1

j ), b = 1
Ψ j

(
F(rT

j· − µ j1) + H−1
j Λ0 j

)
and we obtain:

(
Λ j − Ψ j

(
FFT + H−1

j

)−1 1
Ψ j

(
F

(
rT

j· − µ j1
)

+ H−1
j Λ0 j

))T 1
Ψ j

(
FFT + H−1

j

)
×

(
Λ j − Ψ j

(
FFT + H−1

j

)−1 1
Ψ j

(
F

(
rT

j· − µ j1
)

+ H−1
j Λ0 j

))
−

1
Ψ j

(
F

(
rT

j· − µ j1
)

+ H−1
j Λ0 j

)T
Ψ j

(
FFT + H−1

j

)−1 1
Ψ j

(
F

(
rT

j· − µ j1
)

+ H−1
j Λ0 j

)
+

(
rT

j· − µ j1
)T 1

Ψ j

(
rT

j· − µ j1
)

+ ΛT
0 j

1
Ψ j

H−1
j Λ0 j (9)

Therefore, the posterior for Λ j is proportional to:

π
(
Λ j|Ψ j, θ̃

)
∝ exp

{
−

1
2

(
Λ j − Ψ j

(
FFT + H−1

j

)−1 1
Ψ j

(
F

(
rT

j· − µ j1
)

+ H−1
j Λ0 j

))T

×
1

Ψ j

(
FFT + H−1

j

) (
Λ j − Ψ j

(
FFT + H−1

j

)−1 1
Ψ j

(
F

(
rT

j· − µ j1
)

+ H−1
j Λ0 j

)) }
That is, given Ψ j, the conditional posterior for Λ j is a normal with mean vector µ j and covariance matrix Ψ jΩ j, where:

Ω j =
(
FFT + H−1

j

)−1

µ j = Ω j

[
F

(
rT

j· − µ j1
)

+ H−1
j Λ0 j

]
(10)

(e2) Posterior for Ψ

If we go back to equation (8) and collect the terms that depend on Ψ, we obtain that the posterior is:

π(Ψ j|·) ∝ Ψ
− n

2−
q
2−α j−1

j exp
{
−

1
Ψ j

(
β j +

1
2

(
rT

j· − µ j1 − FTΛ j

)T (
rT

j· − µ j1 − FTΛ j

))}
·

· exp
{
−

1
2

1
Ψ j

(
Λ j − Λ0 j

)T
H−1

j

(
Λ j − Λ0 j

)}
Therefore, we obtain that the posterior for Ψ j is:

Ψ j|·
indep.
∼ IG

(
αΨ j , βΨ j

)
where αΨ j =

n
2

+
q
2

+ α j

and βΨ j = β j +
1
2

((
rT

j· − µ j1 − FTΛ j

)T (
rT

j· − µ j1 − FTΛ j

)
+

(
Λ j − Λ0 j

)T
H−1

j

(
Λ j − Λ0 j

))
2.4 Implementation

Now that we have derived our posteriors, we are ready to implement them using a Gibbs Sampler. We will use a
Metropolis-Hastings algorithm for sampling α, for which we need both the exact posterior distribution and the approxi-
mation obtained with the Volterra integral equation. It is an approach introduced by (Leonard & Hsu, 1992) and (Albert
et al., 2000) and used in (Andrei & Hsu, 2020). Given σ2

1, σ
2
2 and µ, the posterior for α can be approximated by a normal

density with mean vector α∗ and covariance matrix (Q + G)−1, where α∗,G and Q are defined in (5) and (6), respectively.
The exact conditional posterior given σ2

1, σ
2
2 and µ is

π(α|·) ∝ exp
{
−

n
2

Tr
(
A + Se−A

)
−

1
2
αT Gα

}
where S =

1
n

(ri − µ) (ri − µ)T
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The Metropolis-Hastings step at ith iteration would be that we would simulate a candidate value from the approximate
posterior distribution: α̃ ≈∼ N(α∗, (Q + G)−1) and we would accept it with probability min(ρ, 1), where

ρ =
π
(
α̃|·

)
π
(
α(t)|·

) · π∗
(
α(t)|·

)
π∗

(
α̃|·

)
It is useful at this point to remember that there is a connection between π∗ and π, since there is one between A and α,
namely:

α = Vec∗(log(Φ)),A = log(Φ)

Albeit the Gibbs Sampler converges to the same distribution no matter the starting points, we should try to initialize it
with good estimates. Also, we have to make sure that we specify the hyper-parameters with values that would make sense
in the real world:

• n = number of returns in the historical dataset= number of returns from 1/2/2014 to 12/29/2017.

• F̂init =
[
f̂1 f̂2...f̂n

]
, where f̂i for i ∈ {1, 2, ..., n} are the common factors obtained by fitting a factor model on the

historical dataset with an optimal number of factors of q = 18 determined from a scree plot of eigenvalues.

• We also have that fi|Φ
indep.
∼ Nq(0,Φ). In order to specify Φ̂init, we take the covariance of the above found common

factors: Φ̂init = Cov(f̂i).

• We also have the following assumption.

α|θ,∆ = Vec∗(log(Φ))|θ,∆ ∼ Nd

([
θ11q

θ21d−q

]
,

[
σ2

1Iq 0
0 σ2

2Id−q

])

– In order to initialize σ2
1, we have to take the variance of the first q entries in Vec∗(log(Φ̂init)).

– In order to initialize σ2
2, we have to take the variance of the last d − q entries in Vec∗(log(Φ̂init)).

• We remember that Λ j|Ψ j
indep.
∼ Nq(Λ0 j,Ψ jH j). Since, in general, we do not have any prior information on the factor

weights, we specify the hyper-parameters to be:

– Λ̂0 jinit = 0

– We initialize the variance Ψ jH j with a big value: Ψ̂ jinit = 1 and Ĥ jinit = 1010Iq.

• Also, we remember that Ψ j
indep.
∼ IG(α j, β j), for all j ∈ {1, 2, ...,m}. Similarly to the previous point made, in the real

world, we do not have any prior information on Ψ j and this should be reflected in our choice of α j and β j. If we
let α j → 0 and β j → 0 in the pdf of the IG(α j, β j), we notice that we obtain an uninformative prior. Therefore, we
initialize α̂ jinit = β̂ jinit = 10−10.

Using the Metropolis Hastings step that was just discussed, we arrive at the following Gibbs Sampler:

64



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 10, No. 1; 2021

Algorithm 1 Gibbs Sampler log(Φ)

1: α(t+1) =

α̃ ∼ N
((

Q(t) + G(t)
)−1

Q(t)λ(t),
(
Q(t) + G(t)

)−1
)

w.p. min(ρ, 1)

α(t)otherwise

2: Since α = Vec∗
(
log (Φ)

)
⇒

compute Φ(t+1) = exp
{
Vec∗−1

(
α(t+1)

)}
keep Φ(t)

3:


σ2

1
(t+1)
∼ IG

(
q−3

2 , 1
2
∑q

i=1

(
αi

(t+1) − αv
(t+1)

)2
)

σ2
2

(t+1)
∼ IG

(
d−q−3

2 , 1
2
∑d

i=q+1

(
αi

(t+1) − αc
(t+1)

)2
) ⇒

⇒ ∆(t+1) =

σ2
1

(t+1)Iq 0
0 σ2

2
(t+1)Id−q


4: Let Σµ =

(
nΨ(t)−1

+ PTΩ−1P
)−1
⇒ µ(t+1) ∼ N

(
Σµ

(
nΨ(t)−1r∗ (t)

+ PTΩ−1q0

)
,Σµ

)
, where r∗ (t)

=

∑n
i=1 ri−Λ

(t) f(t)
i

n .

5: Let

Σf =

(
Λ(t)T

Ψ(t)−1
Λ(t) +Φ(t+1)−1

)−1
⇒ f(t+1)

i ∼ N
(
ΣfΛ

(t)T
Ψ(t)−1 (

ri − µ
(t+1)

)
,Σf

)
6: Ψ j |·

indep.
∼ IG

(
αΨ j , βΨ j

)
, where αΨ j = n

2 +
q
2 + α j

and βΨ j = β j +
1
2

((
rT

j· − µ j1 − FTΛ j

)T (
rT

j· − µ j1 − FTΛ j

)
+

(
Λ j − Λ0 j

)T
H−1

j

(
Λ j − Λ0 j

))

7: Λ(t+1)
j

indep.
∼ N

(
µ(t+1)

j ,Ψ(t+1)
j Ω

(t+1)
j

)
8: Compute S(t+1)

f =

∑n
i=1 fi fT

i
n , λ(t+1) = Vec∗

(
log

(
S(t+1)

f

))
, d j

(t+1) and e j
(t+1) the eigenvalue and normalized eigenvector of S(t+1)

f respectively.

9: Compute f(t+1)
i j by identifying the coefficients of the entries of the log (Φ) matrix from the equation Vec∗

(
log

(
Φ(t+1)

))T
fi j

(t+1) = ei
(t+1)T log

(
Φ(t+1)

)
e j

(t+1)

10: Compute ξ(t+1)
i j =

(di
(t+1)−d j

(t+1))2

di (t+1)d j (t+1)
(
log

(
di (t+1)

)
−log(d j (t+1))

)2
11: Compute Q(t+1) = n

2
∑q

i=1 fii
(t+1)fii

(t+1)T
+ T

∑q
i< j ξi j

(t+1)fi j
(t+1)fi j

(t+1)T

12: Compute

G(t+1) =

(
Id − J

(
JT∆(t+1)−1J

)−1
JT∆(t+1)−1

)T

∆(t+1)−1

×

(
Id − J

(
JT∆(t+1)−1J

)−1
JT∆(t+1)−1

)

2.5 Results-Personal Views on 4 Stocks

We would like to conduct sensitivity analysis for the confidence in the investor views (the diagonal elements of the Ω
matrix denoted by ωi). We would expect the model to behave in a similar manner as before:

• The more confident the investor is in the inputted views, the closer the model should follow them

• The less confident the investor is in the inputted views, the closer the model should follow history

We choose to have views for the following 4 stocks: AAPL, FB, GOOG, MSFT and we will consider views on industry
sectors in the next section. We will use the daily returns from 1/2/2014 to 12/29/2017. We create the following investor
inputs (again the columns are in order AAPL, FB, GOOG, MSFT and the rows represent the views). Please notice that
the matrix P in our implementation has a lot more columns (one for each stock actively traded in S &P500), but the vast
majority of the entries are 0:

q0 =

[
0.02
0.05

]
,P =

AAPL FB GOOG MSFT
view1 −1 1 0 0
view2 0 0 1 −1

Albeit the memory allocation problem which originally motivated the incorporation of the Bayesian factor model was
solved, the version presented in this paper is still computationally expensive since we have to sample from many distri-
butions. Therefore, an exhaustive search was ran in parallel on multiple cores (each core running the Gibbs Sampler for 1
pair (ω1, ω2), the grid was split into 16 evenly split ranges, each one running 6 simulations). The burn period is 103 and
the iteration period is 104.

In the following plot, 2 of the axis are represented by the two confidence levels (ω1 andω2) and the third one is represented
by the l2 distance ||Pµpost − q0||2. As mentioned previously, this distance should go to 0 as ω1 and ω2 go to 0, which can
easily be observed in Figure 1.
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Figure 1. Distance when considering only 4 stocks

Furthermore, similar to the versions introduced previously, as ω1 and ω2 increase, the distance converges to the same
number. Since ω1 and ω2 are standard deviations, a high standard deviation represents a lack of confidence in the personal
views inputted. Therefore, intuitively, the model should only take into consideration the history. This is precisely how the
model behaves. If we just consider the historical returns, the unbiased estimator for µ is the sample mean of the returns,
r. The distance ||Pr − q0||2 = 0.05386381, which is the level at which the curve in Figure 1 flattens.

One could use this model to hold a portfolio with an initial starting capital of $100, 000 over a testing data set consisting
of the daily returns during the month of January 2018. Please keep in mind that, in order to obtain portfolio weights, we
estimate from the Gibbs Sampler Σpost = ΛpostΦpostΛpost

T + Ψpost and we try to maximize the portfolio returns, while
minimizing the portfolio risk. Hence, we would like to find maxw wTµpost −

λ
2 wTΣpostw, where λ is the investor’s risk

aversion coefficient. In his paper, ? suggests that λ = 2.5 is a reasonable choice for equities. By making the derivative
with respect to w equal to 0, and by solving the resulting equation for w, we obtain: w∗ = 1

2.5Σ
−1
postµpost. The profits

without considering any fees on a testing data set consisting of the returns over the month of January 2018 for all the
previously mentioned combinations of confidence levels (ω1 and ω2) averaged $40, 075.87 with a standard deviation of
$14, 373.88

2.6 Results-Personal Views on Industry Sectors

In this section, we will present similar results to the ones presented in the previous section. We will have the exact same
training and testing data sets as before. The only change is in the personal views inputted in our model. However, this
time we would like to enter personal views about different industry sectors. The stocks in the S &P500 are divided into
11 industry sectors. These industry sectors are described in Appendix 2.6.

In order to have good personal views and not just random guesses, as we have done so far, we will use the weighting
recommendations provided by CFRA 1, an independent fundamental and forensic investment research firm. Each stock
within the same sector receives equal weight that sum up to 1, with a positive weight for the ones outperforming and a
negative weight for the ones under-performing. We will have the following 4 personal views 2:

(1) Information technology outperforms utilities by 0.2% with confidence level ω1.

(2) Energy outperforms industrials by 0.1% with confidence level ω2.

(3) Real Estate outperforms consumer staples by 0.2% with confidence level ω2.

(4) Consumer discretionary outperforms financials by 0.3% with confidence level ω2.
1CFRA: https://eresearch.fidelity.com/eresearch/markets sectors/sectors/si weighting recommendations.jhtml?tab=sirecommendationsFidelity In-

vestments link. The companies in S &P500 were divided into 11 industry sectors based on economic characteristics (please see 2.6. Appendix)
2For details on which companies are in each industry sector, please see https://www.barchart.com/stocks/indices/sp-sector/industrialsbarchart.com
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Hence, we have that q0 = (0.002, 0.001, 0.002, 0.003)T .

We picked 2 distinct confidence levels for the 4 views simply because we wanted to have another 3D plot with 2 of the
axis represented by ω1 and ω2 and the third axis represented by the distance ||Pµpost − q0||2. Just as before, the exhaustive
search was ran in parallel on multiple cores. The same burning and iteration periods were used also.

Figure 2. Distance when considering industry sectors

Again, the model behaves exactly as our intuition suggests. Asω1 andω2 go to 0, the distance ||Pµpost−q0||2 converges to 0.
Moreover, for bigger values of ω1 and ω2 (small confidence in views) the distance converges to 0.004999748 = ||Pr−q0||2.
This confirms our intuition that the less confident the investor is in his or her views, the more the model takes into
consideration the history.

Moving on to presenting the profits, we used the same starting capital of $100, 000, the same testing data set over the
month of January 2018 and the same methodology for computing the portfolio weights. The mean of the profits over all
the simulated pairs (ω1, ω2) was $37, 576.68 with a standard deviation of $5, 857.198.
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Appendix

S &P500 Industry Sectors

The stocks in the S &P500 are divided into broad groupings based on economic characteristics. Currently there are 11
industry sectors3

• Communication Services: from telephone access to high-speed internet, this sector of the economy keeps us all
connected.

• Consumer Discretionary: businesses that have demand that rises and falls based on general economic conditions
such as washers and dryers, sporting goods, new cars, and diamond engagement rings

• Consumer Staples: businesses that sell the necessities of life, ranging from bleach and laundry detergent to tooth-
paste and packaged food.

• Energy: businesses that source, drill, extract, and refine the raw commodities we need to keep the country going,
such as oil and gas.

• Financials: banks, insurance companies, real estate investment trusts, credit card issuers, and a host of other money-
centric enterprises that keep the debits and credits of the economy flowing.

• Health Care: drug companies, medical supply companies, and other scientific-based operations that are concerned
with improving and healing human life.

• Industrials: from railroads and airlines to military weapons and industrial conglomerates.

• Information Technology: hardware, software, computer equipment, and IT services operations.

• Materials sector manufacturers, logs, and mines everything from precious metals, paper, and chemicals to shipping
containers, wood pulp, and industrial ore.

• Real Estate: all Real Estate Investment Trusts (REITs) with the exception of Mortgage REITs, which is housed
under the financial sector. The sector also includes companies that manage and develop properties.

• Utilities sector is home to the firms that make our lights work when we flip the switch, let our stoves erupt in flame
when we want to cook food, make water come out of the tap when we are thirsty, and more.
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