Random Measure Algebras Under O-dot Product and Morse-Transue Integral Convolution
- Jason Hong Jae Park
Abstract
In this article, we consider two operations of random measures: O-dot product and the convolution product by Morse-Transue integral. With these two operations, we construct algebras of random measures. Also we investigate further on the explicit forms of the products of Wiener processes by O-dot operation and by Morse-Transue integral convolution.- Full Text: PDF
- DOI:10.5539/ijsp.v8n6p73
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org