Mechanical Proof of the Maxwell Speed Distribution
- Tsung-Wu Lin
- Hejie Lin
Abstract
This article derives the probability density function ψ(ξ;x,x') of the resulting speed ξ from the collision of two particles with speeds x and x' . This function had been left unsolved for about 150 years. Then uses two approaches to obtain the Maxwell speed distribution: (1) Numerical iteration: using the equation P_new(ξ) =∫_0^∞ ∫_0^∞ψ(ξ;x,x') ∙P_old(x) ∙P_old(x') dxdx' to get the new speed distribution from the old speed distribution. Also, after 9 iterations, the distribution converges to the Maxwell speed distribution. (2) Analytical integration: using the Maxwell speed distribution as the P_old(x) , and then getting P_new(ξ) from the above integration. The result of P_new(ξ) from analytical integration is proved to be exactly the Maxwell speed distribution.- Full Text: PDF
- DOI:10.5539/ijsp.v8n2p90
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org