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Abstract 

This article derives the probability density function 𝜓(ξ; x, x′) of the resulting speed 𝜉 from the collision of two 

particles with speeds x and x′. This function had been left unsolved for about 150 years. Then uses two approaches to 

obtain the Maxwell speed distribution: (1) Numerical iteration: using the equation 

𝑃𝑛𝑒𝑤(ξ) = ∫ ∫ 𝜓(ξ; x, x′)  ∙ 𝑃𝑜𝑙𝑑(x) ∙ 𝑃𝑜𝑙𝑑(x
′) 𝑑𝑥dx′

∞

0

∞

0
  

to get the new speed distribution from the old speed distribution. Also, after 9 iterations, the distribution converges to 

the Maxwell speed distribution. (2) Analytical integration: using the Maxwell speed distribution as the 𝑃𝑜𝑙𝑑(x), and 

then getting 𝑃𝑛𝑒𝑤(ξ) from the above integration. The result of 𝑃𝑛𝑒𝑤(ξ) from analytical integration is proved to be 

exactly the Maxwell speed distribution. 

Keywords: Maxwell speed distribution, Maxwell-Boltzmann distribution, collision of particles, kinetic theory of 

gases 

1. Overview 

Maxwell first provided the Maxwell speed distribution in 1860 on statistical heuristic bases (Maxwell, 1860a,b). 

Maxwell in 1867 (Maxwell) and Boltzmann in 1872 (Boltzmann) carried out some more investigations into the physical 

meaning of the distribution. The simplest way to prove the Maxwell speed distribution is from the statistical view: 

beginning from the Boltzmann distribution of energy state which is proportional to the square of velocity, and extending 

to three velocities in three directions and summing the same speed distribution in all three directions to get the Maxwell 

speed distribution (Brush, 1966, Landau et al., 1969, McQuarrie, 1976, Garrod, 1995, Maudlin, 2013). Therefore, the 

distribution is also known as the Maxwell-Boltzmann distribution. The standard speed distribution function is listed as 

follows along with a more compacted parameter ℎ which is the inverse of the most probable speed 𝑣𝑚𝑝, i.e., 

𝑣𝑚𝑝 = ℎ
−1.  

𝑃(𝑣) =
4

√𝜋
.
𝑚

2𝑘𝑇
/
3/2

𝑣2𝑒
(
−𝑚𝑣2

2𝑘𝑇
)
=

4ℎ3

√𝜋
𝑣2𝑒−ℎ

2𝑣2                         (1) 

where 𝑘 is the Boltzmann constant, 𝑇 is the equilibrium temperature, 𝑚 is the particle mass, and ℎ = √
𝑚

2𝑘𝑇
. 

In 1872, Boltzmann gave the following equation: 

dn = f(x, t)dx ∙ f(x′, t)dx′ ∙ 𝜓(ξ; x, x′)dξ                                   (2) 

where f(x, t)dx is the number of particles with speed between x and x+dx, and similarly for f(x′, t)dx′, dn is the 

number of particles with speed between ξ and ξ + dξ. If we let f(ξ, t + dt) = dn/dξ, and rewrite Eq.(1) as 

f(ξ, t + dt) = ∫ ∫ 𝜓(ξ; x, x′)  ∙ f(x, t) ∙ f(x′, t) 𝑑𝑥dx′
∞

0

∞

0
                           (3) 

As 𝑡 → ∞, f(x, t) → 𝑃(𝑥), the correct distribution, 𝑃(𝑥), should satisfy the following new integral equation 

P(ξ) = ∫ ∫ 𝜓(ξ; x, x′)  ∙ P(x) ∙ P(x′) 𝑑𝑥dx′
∞

0

∞

0
                               (4a) 

Boltzmann said that “Since this calculation (𝜓(ξ; x, x′), add by authors), although tedious, is not at all difficult, …”. 

However, until now, this calculation is still missing in the literature. As shown in Section 2, the function can be derived 

based on Newton’s laws of motion, and therefore it is also a mechanical proof of the Maxwell speed distribution. 
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After we get the function 𝜓(ξ; x, x′), we use two approaches to get the Maxwell speed distribution: (1) Numerical 

iteration: using the following equation to get the new distribution from the old one. Also, found that the final 

distribution after 9 iterations converges to the Maxwell speed distribution as shown in Section 3. 

𝑃𝑛𝑒𝑤(ξ) = ∫ ∫ 𝜓(ξ; x, x′)  ∙ 𝑃𝑜𝑙𝑑(x) ∙ 𝑃𝑜𝑙𝑑(x
′) 𝑑𝑥dx′

∞

0

∞

0
                      (4b) 

(2) Analytical integration: using the Maxwell speed distribution as 𝑃𝑜𝑙𝑑 to get 𝑃𝑛𝑒𝑤 from integration. And the 𝑃𝑛𝑒𝑤 

from analytical integration is exactly the Maxwell speed distribution as shown in Section 4. 

2. Derivation of 𝝍(𝛏; 𝐱, 𝐱′) 

Before processing to derive the function 𝜓(ξ; x, x′), we change the variables ξ to 𝑣, x to 𝑣𝑗 and x′ to 𝑣𝑘 and rewrite 

the function as 𝜓(𝑣; 𝑣𝑗 , 𝑣𝑘). For ease of reference, the resulting function is listed as follows. Since 𝑣𝑗 and 𝑣𝑘 are 

exchangeable, only the functions for 𝑣𝑗 ≥ 𝑣𝑘 are listed. 

𝜓(𝑣; 𝑣𝑗 , 𝑣𝑘) =
𝑣

𝑣𝑗𝑣𝑘
sin−1 4

2𝑣

𝑣𝑗
2 + 𝑣𝑘

2√𝑣𝑗
2 + 𝑣𝑘

2 − 𝑣25 ,   0 ≤ 𝑣 ≤ 𝑣𝑘   or   𝑣𝑗 ≤ 𝑣 ≤ √𝑣𝑗
2 + 𝑣𝑘

2 

=
𝑣

𝑣𝑗𝑣𝑘
sin−1 (

2𝑣𝑗𝑣𝑘

𝑣𝑗
2+𝑣𝑘

2),                     0 ≤ 𝑣𝑘 ≤ 𝑣 ≤ 𝑣𝑗 

                = 0,                           𝑣 ≥ √𝑣𝑗
2 + 𝑣𝑘

2                            (5) 

2.1 For Special Case of 𝑣𝑘 = 0 

Let v0 = 𝑣𝑗 be the speed of particle 1 with mass M1 which will hit particle 2 with mass M2 at rest. After a collision, 

the new particle speeds are v1 and v2 as shown in Fig. 1. 

 
Figure 1. The collision of two particles where particle 2 is at rest 

Based on Newton’s laws of motion, the total momenta before and after the collision are the same (Eqs.(6-7)). Also, for 

elastic collision, the total energies before and after the collision are also the same (Eq.(8)). 

                     M1v0 = M2v2 cos 𝜃 + M1v1 cos𝜙                                  (6) 

                         0 = M2v2 sin 𝜃 − M1v1 sin𝜙                                     (7) 

                   M1v0
2/2 = M2v2

2/2 + M1v1
2/2                                    (8) 

For M1 = M2, we get the solutions as (Note 1) 

                         v2 = v0 cos 𝜃                                          (9) 

                         v1 = v0 sin 𝜃                                           (10) 

                   sin(𝜃 + 𝜙) = 1    or    𝜙 =
𝜋

2
− 𝜃                                 (11) 

The solutions can be represented as Fig. 2, where v1 = 𝐵𝑃̅̅ ̅̅ , and v2 = 𝐵𝑄̅̅ ̅̅ . Note that, after the collision, P and Q are 

always located on the sphere surface and the probability is uniform on this surface. Since the probability of the point 

inside the circle in Fig. 2(b) (radius=diameter of a particle) is uniformly distributed (Note 2), we get the probability of 

Q located between 𝜃 and 𝜃 + 𝑑𝜃 as P𝜃(𝜃)𝑑𝜃 = 2π(v0 cos 𝜃 sin 𝜃)(v0𝑑𝜃)/(𝜋v0
2). And change the variable from 𝜃 

to 𝑣 = v0 cos 𝜃 by P𝑣(𝑣) = P𝜃(𝜃) |
𝑑𝜃

𝑑𝑣
| to get  

P𝑣(𝑣) =
2𝑣

v0
2 ,    for  0 ≤ 𝑣 ≤ v0;  and  P𝑣(𝑣) = 0, otherwise.                     (12) 
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Figure 2. The relation between collision point as shown in (b) and new velocity BQ̅̅ ̅̅  in (a) 

2.2 For General Case of 𝑣𝑗 ≥ 𝑣𝑘 > 0 

Let 𝑣𝑗 = |v̅1| and 𝑣𝑘 = |v̅2| be the speeds of two particles before a collision. After the collision, the new particle 

speeds are 𝑣𝑖1 = |ṽ1| and 𝑣𝑖2 = |ṽ2|. Let v0 = v̅1 − v̅2, and follow the same procedures of Section 2.1 to get v1 and 

v2, and therefore to get ṽ1 = v̅2 + v1 and ṽ2 = v̅2 + v2 as shown in Fig. 3.  

 

Figure 3. Solution P, Q located on a sphere surface 

Then for fixed magnitudes of 𝑣𝑗   and 𝑣𝑘, if 𝑣𝑘 is fixed in the horizontal direction but changed the direction of 

𝑣𝑗, then point A will be located on a spherical surface as shown in Fig. 4. And the probability of point A on the 

surface is uniformly distributed since 𝑣𝑗 has equal opportunity in any direction. The center of the surface A is at 

point O and its radius is 𝑣𝑗. S is the middle point between B and A and is the center of the sphere surface P (also 

in Fig. 2 and 3). The point S will be located on a smaller sphere surface center at C (middle point of O and B) with 

radius 𝑣𝑗/2. Since 𝐶𝑆̅̅̅̅  is always parallel to 𝑂𝐴̅̅ ̅̅ , the point S on the sphere surface S is also uniformly distributed 

similarly to point A on the sphere surface A. Although the sphere surfaces S and A are fixed, the surface P is 

variable in center S and radius r2. 
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Figure 4. Three sphere surfaces A, S, P with centers at O, C, S with radius 𝑣𝑗 , 𝑣𝑗/2, r2 

Next, the surface S and the surface P are used to find the probability of 𝑣𝑖. The location of S is defined by α 

(representing the relative moving direction before collision), and the location of P is defined by β (representing the 

particle moving direction after collision). 

1) The probability density of point S located on surface S at angle   is 𝑃 ( ) =
1

2
sin  .  

2) The probability density of point P located on surface P at angle   is 𝑃 | ( ) =
1

2
sin  . 

The 𝑟1 and 𝑟2 as shown in Fig. 4 can be computed from   as 

           𝑟1( ; 𝑣𝑗 , 𝑣𝑘) = 𝑂𝑆̅̅̅̅ =
1

2
√(𝑣𝑗 cos +𝑣𝑘)

2
+ (𝑣𝑗 sin  )

2
=

1

2
√𝑣𝑗

2 + 𝑣𝑘
2 + 2𝑣𝑗𝑣𝑘 cos         (13) 

           𝑟2( ; 𝑣𝑗 , 𝑣𝑘) = 𝑆𝐵̅̅̅̅ =
1

2
√(𝑣𝑗 cos −𝑣𝑘)

2
+ (𝑣𝑗 sin  )

2
=

1

2
√𝑣𝑗

2 + 𝑣𝑘
2 − 2𝑣𝑗𝑣𝑘 cos        (14) 

So the relation between 𝑣 and   for fixed 𝑟1 and 𝑟2 is 

         𝑣( ; 𝑟1, 𝑟2) = 𝑂𝑃̅̅ ̅̅ = √(𝑟2 cos +𝑟1)
2 + (𝑟2 sin  )

2 = √𝑟1
2 + 𝑟2

2 + 2𝑟1𝑟2 cos              (15) 

Hence 

                
𝑑𝑣

𝑑 
=

−𝑟1𝑟2 sin 

√𝑟1
2+𝑟2

2+2𝑟1𝑟2 cos 

=
−𝑟1𝑟2 sin 

𝑣
                            (16) 

Using the relation above to change 𝑃 | ( ) =
1

2
sin   to 

𝑃𝑣| (𝑣) = 𝑃 | ( ) |
𝑑 

𝑑𝑣
| =

𝑣

2𝑟1𝑟2
                             (17) 

moreover, consider all density for   to get (Note 3) 

𝜓(𝑣; 𝑣𝑗 , 𝑣𝑘) = ∫ 𝑃𝑣| (𝑣)𝑃 ( )𝑑 
𝜋− 𝑚𝑖𝑛

 𝑚𝑖𝑛

= ∫
𝑣

4𝑟1𝑟2
sin  𝑑 

𝜋− 𝑚𝑖𝑛

 𝑚𝑖𝑛

 

                  = ∫
𝑣 sin 𝑑 

√.𝑣𝑗
2+𝑣𝑘

2/
2
−4𝑣𝑗

2𝑣𝑘
2 cos2  

=
𝑣

𝑣𝑗𝑣𝑘

𝜋− 𝑚𝑖𝑛
 𝑚𝑖𝑛

sin−1 (
2𝑣𝑗𝑣𝑘

𝑣𝑗
2+𝑣𝑘

2 cos  𝑚𝑖𝑛)                (18) 

where  𝑚𝑖𝑛 = 0 for 𝑣𝑘 ≤ 𝑣 ≤ 𝑣𝑗, else  𝑚𝑖𝑛 are where 𝑣 = 𝑂𝑇̅̅ ̅̅  or 𝑣 = 𝑂𝑇′̅̅ ̅̅ ̅ (Fig. 4) as follows 

𝑣 = |𝑟1 ± 𝑟2| =
1

2
|√𝑣𝑗

2 + 𝑣𝑘
2 + 2𝑣𝑗𝑣𝑘 cos  𝑚𝑖𝑛 ±√𝑣𝑗

2 + 𝑣𝑘
2 − 2𝑣𝑗𝑣𝑘 cos  𝑚𝑖𝑛|           (19) 

Both equations have identical solutions for cos  𝑚𝑖𝑛as (Note 4) 

                    cos 𝑚𝑖𝑛 =
𝑣

𝑣𝑗𝑣𝑘
√𝑣𝑗

2 + 𝑣𝑘
2 − 𝑣2                                (20) 

Substitution of Eq.(20) into Eq.(18) yields the probability density function as (Regions are shown in Fig. 6) 
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  𝜓(𝑣; 𝑣𝑗 , 𝑣𝑘) =
𝑣

𝑣𝑗𝑣𝑘
sin−1 (

2𝑣

𝑣𝑗
2+𝑣𝑘

2√𝑣𝑗
2 + 𝑣𝑘

2 − 𝑣2) , 0 ≤ 𝑣 ≤ 𝑣𝑘 (region 𝐴2) 

                                                and  𝑣𝑗 ≤ 𝑣 ≤ √𝑣𝑗
2 + 𝑣𝑘

2  (region 𝐴1) 

                            =
𝑣

𝑣𝑗𝑣𝑘
sin−1 (

2𝑣𝑗𝑣𝑘

𝑣𝑗
2+𝑣𝑘

2),  0 ≤ 𝑣𝑘 ≤ 𝑣 ≤ 𝑣𝑗   (regions 𝐵2 and 𝐵1) 

                   = 0,                 𝑣 ≥ √𝑣𝑗
2 + 𝑣𝑘

2  (region 𝐵0)                      (21) 

3. Numerical Iteration 

It is easy to do the iteration by 65 equal spaced discrete speeds beginning from v1 = 0.5 in increments of 1.0 and end 

up to v65 = 64.5, where speeds over 64.5 are truncated, and therefore the probabilities are assumed to be zero. For 

discrete speeds, the integration changes to summation as follows (∆𝑣𝑘∆𝑣𝑗 = 1) 

          P𝑛𝑒𝑤(𝑣𝑖) = ∑ ∑ 𝜓(𝑣𝑖; 𝑣𝑗 , 𝑣𝑘)P𝑜𝑙𝑑(𝑣𝑗)P𝑜𝑙𝑑(𝑣𝑘)
65
𝑘=1

65
𝑗=1 ,     𝑖 = 1,2,3, … ,65                (22) 

If we assume the Root-Mean-Square speed is 16.5, and the initial speeds of all particles are 16.5, that is P𝑜𝑙𝑑(𝑣17) =
1 and all others P𝑜𝑙𝑑(𝑣𝑖) = 0, for  𝑖 ≠ 17. Use the equation above to get P𝑛𝑒𝑤(𝑣𝑖), and set P𝑜𝑙𝑑(𝑣𝑖) = P𝑛𝑒𝑤(𝑣𝑖) for 

next iteration. After nine iterations, the distribution curves converge to the Maxwell speed distribution as shown in 

Figure 5. 

 

Figure 5. Nine iterations converge to the Maxwell speed distribution 

As shown in Fig. 5, the horizontal axis for the speed, 𝑣, has been normalized by the most probable speed, 𝑣𝑚𝑝. 

Therefore the peak dirtribution density is just at 𝑣 𝑣𝑚𝑝⁄ = ℎ𝑣 = 1 as we would expect. Where 𝑣𝑚𝑝 = √2/3𝑣𝑟𝑚𝑠 =
13.47, 𝑎𝑛𝑑 𝑡he peak distribution density is (4ℎ √𝜋⁄ )𝑒−1 = 0.0616. Any initial distribution may be assumed, as long 

as the initial RMS speed less than 25% of the maximum speed used, i.e., 64.5 in the presented case, the distribution 

curve always converges to the Maxwell speed distribution. 

4. Analytical Integration 

Let 𝑃𝑜𝑙𝑑  be the Maxwell speed distribution 𝑃(𝑣) =
4ℎ3

√𝜋
𝑣2𝑒−ℎ

2𝑣2  and compute 𝑃𝑛𝑒𝑤  from the following 

equation with four regions as shown in Fig. 6. 

               𝑃𝑛𝑒𝑤(𝑣) = ∫ ∫ 𝜓(𝑣; 𝑣𝑗 , 𝑣𝑘) 𝑃𝑜𝑙𝑑(𝑣𝑗)𝑃𝑜𝑙𝑑(𝑣𝑘)𝑑𝑣𝑗
∞

0

∞

0
𝑑𝑣𝑘  

                      =
32ℎ6

𝜋
∫∫ 𝑣𝑣𝑗𝑣𝑘 sin

−1 (
2𝑣

𝑣𝑗
2+𝑣𝑘

2√𝑣𝑗
2 + 𝑣𝑘

2 − 𝑣2)
𝐴1+𝐴2

𝑒−ℎ
2(𝑣𝑗

2+𝑣𝑘
2) 𝑑𝑣𝑗𝑑𝑣𝑘 
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                  +
32ℎ6

𝜋
∫∫ 𝑣𝑣𝑗𝑣𝑘 sin

−1 (
2𝑣𝑗𝑣𝑘

𝑣𝑗
2+𝑣𝑘

2)𝐵1+𝐵2
𝑒−ℎ

2(𝑣𝑗
2+𝑣𝑘

2) 𝑑𝑣𝑗𝑑𝑣𝑘                       (23) 

 
Figure 6. Five regions for integrations (for fixed 𝑣) 

Change rectangular coordinates to polar coordinates: 𝑣𝑗 = 𝑟 cos 𝜃,  𝑣𝑘 = 𝑟 sin 𝜃 

        𝑃𝑛𝑒𝑤(𝑣) =
32ℎ6𝑣

𝜋
∫∫ 𝑟2 sin 𝜃 cos 𝜃 sin−1 4

2𝑣

𝑟
√1 − .

𝑣

𝑟
/
2

5
𝐴1+𝐴2

𝑒−ℎ
2𝑟2𝑟 𝑑𝑟𝑑𝜃 

                  +
32ℎ6𝑣

𝜋
∫∫ 𝑟2 sin 𝜃 cos 𝜃 sin−1(2sin 𝜃 cos 𝜃)

𝐵1+𝐵2
𝑒−ℎ

2𝑟2𝑟 𝑑𝑟𝑑𝜃                  (24) 

In Fig. 6, 𝜃0 = cos
−1 𝑣

𝑟
 is the angle at the boundary of regions 𝐴1 and 𝐵1, and 𝜃0 = sin

−1 𝑣

𝑟
 when in regions 𝐴2 and 

𝐵2. And since sin−1 4
2𝑣

𝑟
√1 − .

𝑣

𝑟
/
2

5 = 2𝜃0, we have  

𝑃𝑛𝑒𝑤(𝑣) =
16ℎ6𝑣

𝜋
∫ {∫ sin 2𝜃 (2𝜃0)𝑑𝜃 + ∫ sin 2𝜃 (2𝜃)𝑑𝜃

𝜃0

0

𝜋/4

𝜃0

}
∞

𝑣

𝑒−ℎ
2𝑟2𝑟3 𝑑𝑟 

                       =
8ℎ6𝑣

𝜋
∫ 22𝜃0 ,− cos 2𝜃-𝜃0

𝜋/4
+ ,−2𝜃 cos 2𝜃 + sin 2𝜃-0

𝜃03 𝑒−ℎ
2𝑟2𝑟3 𝑑𝑟

∞

𝑣
 

                       =
8ℎ6𝑣

𝜋
∫ * 2𝜃0 cos 2𝜃0 − 2𝜃0 cos 2𝜃0 +sin 2𝜃0+𝑒

−ℎ2𝑟2𝑟3 𝑑𝑟
∞

𝑣
 

                   =
8ℎ6𝑣

𝜋
∫ sin 2𝜃0 𝑒

−ℎ2𝑟2𝑟3 𝑑𝑟
∞

𝑣
=

8ℎ6𝑣

𝜋
∫

2𝑣

𝑟
√1 − .

𝑣

𝑟
/
2

𝑒−ℎ
2𝑟2𝑟3 𝑑𝑟

∞

𝑣
 

                =
16ℎ6𝑣2

𝜋
∫ √𝑟2 − 𝑣2 𝑒−ℎ

2𝑟2𝑟𝑑𝑟
∞

𝑣
                                           (25) 

Change variable by 𝑢2 = 𝑟2 − 𝑣2, 2𝑢𝑑𝑢 = 2𝑟𝑑𝑟, and use ∫ 𝑃𝑢(𝑢)𝑑𝑢 =
4ℎ3

√𝜋
∫ 𝑢2 𝑒−ℎ

2𝑢2𝑑𝑢
∞

0
= 1

∞

0
 to get 

 𝑃𝑛𝑒𝑤(𝑣) =
16ℎ6𝑣2

𝜋
∫ 𝑢 𝑒−ℎ

2(𝑣2+𝑢2)𝑢𝑑𝑢
∞

0
=

4ℎ3

√𝜋
𝑣2𝑒−ℎ

2𝑣2 0
4ℎ3

√𝜋
∫ 𝑢2 𝑒−ℎ

2𝑢2𝑑𝑢
∞

0
1 =

4ℎ3

√𝜋
𝑣2𝑒−ℎ

2𝑣2     (26) 

The analytical integration result of 𝑃𝑛𝑒𝑤(𝑣) is just the Maxwell speed distribution as we would expect. This concludes 

the proof that the Maxwell speed distribution is correct from the random collisions of the particles. 

5. Conclusions and Further Studies 

It is not only interesting but also very important to get the function 𝜓(𝑣; 𝑣𝑗 , 𝑣𝑘) since this is from which the Maxwell 

speed distribution can be proved. From the derivation of the function 𝜓(𝑣; 𝑣𝑗 , 𝑣𝑘), we can reveal the basic mechanism 

behind the macroscopic phenomenon. The mechanics of the collision of particles is a bridge between microscopic 
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behavior and macroscopic phenomenon.  

This paper only investigates the collisions of equal mass particles. Further study may be on the collisions of unequal 

mass particles and may be used to give a mechanical proof of Avogadro’s law. The procedures of this paper may also be 

used for the collisions of charged particles. 
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Notes 

Note 1. 

Begin from following equations 

                           M1v0 = M2v2 cos 𝜃 + M1v1 cos𝜙                               (N1) 

                               0 = M2v2 sin 𝜃 − M1v1 sin𝜙                                (N2) 

                         M1v0
2/2 = M2v2

2/2 + M1v1
2/2                                 (N3) 

Regroup and take the square of Eqs.(N1) and (N2) to get 

M1
2v1

2 cos2𝜙 = (M2v2 cos 𝜃 − M1v0)
2 

                                = M2
2v2

2 cos2 𝜃 +M1
2v0

2 − 2M1M2v0v2 cos 𝜃                      (N4) 

                      M1
2v1

2 sin2 𝜙 = M2
2v2

2 sin2 𝜃                                   (N5) 

Add Eqs.(N4) and (N5) to get Eq.(N6), multiply Eq.(N3) by M1 to get Eq.(N7), and then subtract Eq.(N6) from 

Eq.(N7) to get Eq.(N8). 

                    M1
2v1

2 −M2
2v2

2 = M1
2v0

2 − 2M1v0M2v2 cos 𝜃                            (N6) 

                  M1
2v1

2 +M1M2v2
2 = M1

2v0
2                                     (N7) 

                  (M1M2 +M2
2)v2

2 = 2M1v0M2v2 cos 𝜃                               (N8) 

From Eq.(N8) we get v2 also, substitute to Eq.(N3) to get v1 as 

http://hipacc.ucsc.edu/
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                              v2 = v0 .
2M1

M1+M2
/ cos 𝜃                                      (N9) 

                              v1 = v0√1 −
4M1M2

(M1+M2)
2 cos

2 𝜃                                (N10) 

Next, we will find the solution for 𝜙: multiply Eq.(N1) & (N2) by sin𝜙 & cos𝜙 and add together to get 

                       M1v0 sin𝜙 = M2v2(cos 𝜃 sin𝜙 + sin 𝜃 cos𝜙)                       (N11) 

Since cos 𝜃 sin𝜙 + sin 𝜃 cos𝜙 = sin(𝜃 + 𝜙), we get 

                       sin(𝜃 + 𝜙) =
M1v0

M2v2
sin𝜙                                      (N12) 

From Eq.(N2) to get Eq.(N13). Substitute to Eq.(N12) and by Eq.(N10) to get 

                            sin𝜙 =
M2v2

M1v1
sin 𝜃                                         (N13) 

                       sin(𝜃 + 𝜙) =
v0

v1
sin 𝜃 =

sin𝜃

√1−
4M1M2

(M1+M2)
2 cos

2 𝜃
                             (N14) 

For M1 = M2, from Eqs.(N9)(N10)(N14), we get the solutions as 

                              v2 = v0 cos 𝜃                                          (N15) 

                              v1 = v0 sin 𝜃                                          (N16) 

                        sin(𝜃 + 𝜙) = 1    or    𝜙 =
𝜋

2
− 𝜃                                  (N17) 

 

Note 2. 

P and Q are always located on the sphere surface, and the probability is uniform on this surface. Since the probability 

of the point inside the circle in Fig. 2(b) (radius=diameter of particle=D) is uniformly distributed. The reasons are based 

on the following factors: 

1) The area of the ring on the sphere surface (Fig. 2(a)) is 2π .
v0

2
sin 2𝜃/ .

v0

2
2𝑑𝜃/ = 2𝜋v0

2 sin 𝜃 cos 𝜃 𝑑𝜃. 

2) The area of the ring inside the circular plane disk (Fig. 2(b)) is 2𝜋( sin 𝜃)𝑑( sin 𝜃) = 2𝜋𝐷2 sin 𝜃 cos 𝜃 𝑑𝜃 

3) The ratio of the two areas is v0
2/𝐷2, it is not dependent on 𝜃. 

4) When the center of the particle hits inside the ring of the disk, the Q point must locate inside the ring on the sphere 

surface. 

5) It has equal opportunity to hit on any point inside the circle. 

 

Note 3. 

𝜓(𝑣; 𝑣𝑗 , 𝑣𝑘) = ∫ 𝑃𝑣| (𝑣)𝑃 ( )𝑑 
 𝑚𝑎𝑥

 𝑚𝑖𝑛

= ∫
𝑣

4𝑟1𝑟2
sin  𝑑 

𝜋− 𝑚𝑖𝑛

 𝑚𝑖𝑛

 

= ∫
𝑣 sin 𝑑 

√.𝑣𝑗
2+𝑣𝑘

2/
2
−4𝑣𝑗

2𝑣𝑘
2 cos2  

𝜋− 𝑚𝑖𝑛
 𝑚𝑖𝑛

 =
𝑣

2𝑣𝑗𝑣𝑘
∫

2𝑣𝑗𝑣𝑘

𝑣𝑗
2+𝑣𝑘

2sin 𝑑 

√1−(
2𝑣𝑗𝑣𝑘

𝑣𝑗
2+𝑣𝑘

2 cos )

2

𝜋− 𝑚𝑖𝑛
 𝑚𝑖𝑛

  

Change variable by sin 𝑢 =
2𝑣𝑗𝑣𝑘

𝑣𝑗
2+𝑣𝑘

2 cos  , cos 𝑢 𝑑𝑢 = −
2𝑣𝑗𝑣𝑘

𝑣𝑗
2+𝑣𝑘

2 sin  𝑑 , to get 

  𝜓(𝑣; 𝑣𝑗 , 𝑣𝑘) =
−𝑣

2𝑣𝑗𝑣𝑘
∫

cos𝑢𝑑𝑢

√1−sin2 𝑢

𝑢𝑚𝑎𝑥
𝑢𝑚𝑖𝑛

=
−𝑣

2𝑣𝑗𝑣𝑘
∫

cos𝑢𝑑𝑢

cos𝑢

𝑢𝑚𝑎𝑥
𝑢𝑚𝑖𝑛

=
𝑣

2𝑣𝑗𝑣𝑘
(𝑢𝑚𝑖𝑛 − 𝑢𝑚𝑎𝑥) 

                       =
𝑣

2𝑣𝑗𝑣𝑘
(sin−1 (

2𝑣𝑗𝑣𝑘

𝑣𝑗
2+𝑣𝑘

2 cos 𝑚𝑖𝑛) − sin
−1 (

2𝑣𝑗𝑣𝑘

𝑣𝑗
2+𝑣𝑘

2 cos(𝜋 −  𝑚𝑖𝑛))) 
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                       =
𝑣

𝑣𝑗𝑣𝑘
sin−1 (

2𝑣𝑗𝑣𝑘

𝑣𝑗
2+𝑣𝑘

2 cos 𝑚𝑖𝑛)  

Note 4. 

Begin from the equation 

𝑣 = |𝑟1 ± 𝑟2| =
1

2
|√𝑣𝑗

2 + 𝑣𝑘
2 + 2𝑣𝑗𝑣𝑘 cos  𝑚𝑖𝑛 ±√𝑣𝑗

2 + 𝑣𝑘
2 − 2𝑣𝑗𝑣𝑘 cos  𝑚𝑖𝑛| 

Square to get 

4𝑣2 = 𝑣𝑗
2 + 𝑣𝑘

2 + 2𝑣𝑗𝑣𝑘 cos  𝑚𝑖𝑛 + 𝑣𝑗
2 + 𝑣𝑘

2 − 2𝑣𝑗𝑣𝑘 cos  𝑚𝑖𝑛 ± 2√(𝑣𝑗
2 + 𝑣𝑘

2)
2
− (2𝑣𝑗𝑣𝑘 cos  𝑚𝑖𝑛)

2
 

Square again to get 

(𝑣𝑗
2 + 𝑣𝑘

2)
2
− (2𝑣𝑗𝑣𝑘 cos 𝑚𝑖𝑛)

2
= (𝑣𝑗

2 + 𝑣𝑘
2 − 2𝑣2)

2
= (𝑣𝑗

2 + 𝑣𝑘
2)
2
− 4𝑣2(𝑣𝑗

2 + 𝑣𝑘
2) + 4𝑣4 

or 

(2𝑣𝑗𝑣𝑘 cos  𝑚𝑖𝑛)
2
= 4𝑣2(𝑣𝑗

2 + 𝑣𝑘
2 − 𝑣2) 

Hence 

cos 𝑚𝑖𝑛 = ±
𝑣

𝑣𝑗𝑣𝑘
 √𝑣𝑗

2 + 𝑣𝑘
2 − 𝑣2 

Therefore we have 

cos 𝑚𝑖𝑛 =
𝑣

𝑣𝑗𝑣𝑘
 √𝑣𝑗

2 + 𝑣𝑘
2 − 𝑣2 

cos  𝑚𝑎𝑥 = cos(𝜋 −  𝑚𝑖𝑛) = −
𝑣

𝑣𝑗𝑣𝑘
 √𝑣𝑗

2 + 𝑣𝑘
2 − 𝑣2 
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