Measuring and Managing Credit Risk for Chinese Microfinance Institutions

Jie Li, Zhenyu Sheng

Abstract


Chinese microfinance institutions need to measure and manage credit risk in a quantitative way in order to improve competitiveness. To establish a credit scoring model (CSM) with sound predictive power, they should examine various models carefully, identify variables, assign values to variables and reduce variable dimensions in an appropriate way. Microfinance institutions could employ both CSM and loan officer’s subjective appraisals to improve risk management level gradually. The paper sets up a CSM based on the data of a microfinance company running from October 2009 to June 2014 in Jiangsu province. As for establishing the model, the paper uses Linear Discriminant Analysis (LDA) method, selects 16 initial variables, employs direct method to assign variables and adopts all the variables into the model. Ten samples are constructed by randomly selecting records. Based on the samples, the coefficients are determined and the final none-standardized discriminant function is established. It is found that Bank credit, Education, Old client and Rate variables have the greatest impact on the discriminant effect. Compared with the same international models, this model’s classification effect is fine. The paper displays the key technical points to build a credit scoring model based on a practical application, which provides help and references for Chinese microfinance institutions to measure and manage credit risk quantitatively.


Full Text:

PDF


DOI: https://doi.org/10.5539/ijef.v10n7p56

Copyright (c) 2018 Jie Li, Zhenyu Sheng

License URL: http://creativecommons.org/licenses/by/4.0

International Journal of Economics and Finance  ISSN  1916-971X (Print) ISSN  1916-9728 (Online)  Email: ijef@ccsenet.org

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.