3N-Q: Natural Nearest Neighbor with Quality
- Shu Zhang
- Malek Mouhoub
- Samira Sadaoui
Abstract
In this paper, a novel algorithm for enhancing the performance of classification is proposed. This new method provides rich information for clustering and outlier detection. We call it Natural Nearest Neighbor with Quality (3N-Q). Comparing to K-nearest neighbor and E-nearest neighbor, 3N-Q employs a completely different concept to find the nearest neighbors passively, which can adaptively and automatically get the K value. This value as well as distribution of neighbors and frequency of being neighbors of others offer precious foundation not only in classification but also in clustering and outlier detection. Subsequently, we propose a fitness function that reflects the quality of each training sample, retaining the good ones while eliminating the bad ones according to the quality threshold. From the experiment results we report in this paper, it is observed that 3N-Q is efficient and accurate for solving data mining problems.- Full Text: PDF
- DOI:10.5539/cis.v7n1p94
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org