3N-Q: Natural Nearest Neighbor with Quality

Shu Zhang, Malek Mouhoub, Samira Sadaoui


In this paper, a novel algorithm for enhancing the performance of classification is proposed. This new method provides rich information for clustering and outlier detection. We call it Natural Nearest Neighbor with Quality (3N-Q). Comparing to K-nearest neighbor and E-nearest neighbor, 3N-Q employs a completely different concept to find the nearest neighbors passively, which can adaptively and automatically get the K value. This value as well as distribution of neighbors and frequency of being neighbors of others offer precious foundation not only in classification but also in clustering and outlier detection. Subsequently, we propose a fitness function that reflects the quality of each training sample, retaining the good ones while eliminating the bad ones according to the quality threshold. From the experiment results we report in this paper, it is observed that 3N-Q is efficient and accurate for solving data mining problems.

Full Text:


DOI: http://dx.doi.org/10.5539/cis.v7n1p94

Computer and Information Science   ISSN 1913-8989 (Print)   ISSN 1913-8997 (Online)
Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.