A Scalable Image Snippet Extraction Framework for Integration with Search Engines

Sheikh Muhammad Sarwar, Md. Mustafizur Rahman, Md. Haider Ali, Ashique Mahmood Adnan


Search result visualization is a task performed by search engines that enables users to find their desired documents, in an effective and efficient manner. Image based summary or best images of a web document, displayed as a part of the visualization process, has become indispensable, as a human perceives images instantaneously. But, selection of the best image increases latency in search result generation, and workload for the search process. In this paper, we propose and implement a search framework by integrating text and image search engines that increases the speed of extracting a representative image of a web document. Text associated with an image, image area and position are incorporated with the ranking function that finds the image snippet. By comparison, we show that our framework significantly improves over the existing ones in terms of time complexity, while maintaining the quality of image based summaries.

Full Text:


DOI: http://dx.doi.org/10.5539/cis.v6n1p89

Computer and Information Science   ISSN 1913-8989 (Print)   ISSN 1913-8997 (Online)
Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.