Audio Fingerprint Extraction Using an Adapted Computational Geometry Algorithm


  •  Marios Poulos    
  •  Ioannis Deliyannis    
  •  Andreas Floros    

Abstract

This work presents an adapted version of the Computational Geometry Algorithm (CGA) used for the development of audio-based applications and services. The CGA algorithm analyses an audio stream and produces a unique set of points that can be considered to be the audio data “fingerprint”. It is shown that this fingerprint is coding-independent, a fact that can render the proposed algorithm suitable for multiple purposes, including the categorisation of content identity and the identification of audio clips, hence providing support for the realisation of audio sorting/searching tasks and services. Additionally, based on specific novel applications and services, the overall algorithmic performance and efficiency characteristics of the CGA algorithm are discussed and analysed.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: semiannual

Journal Metrics

WJCI (2022): 0.636

Impact Factor 2022 (by WJCI):  0.419

h-index (January 2024): 43

i10-index (January 2024): 193

h5-index (January 2024): N/A

h5-median(January 2024): N/A

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )

Contact