Forecasting Financial Time Series Using Multiple Regression, Multi Layer Perception, Radial Basis Function and Adaptive Neuro Fuzzy Inference System Models: A Comparative Analysis

Arindam Chaudhuri


In the last few decades, techniques such as Artificial Neural Networks and Fuzzy Inference Systems were used for developing predictive models to estimate the required parameters. Since the recent past Soft Computing techniques are being used as alternate statistical tool. Determination of nature of financial time series data is difficult, expensive, time consuming and involves complex tests. In this paper, we use Multi Layer Perception and Radial Basis Functions of Artificial Neural Networks, Adaptive Neuro Fuzzy Inference System for prediction of S% (Financial Stress percent) of financial time series data and compare it with traditional statistical tool of Multiple Regression. The accuracies of Artificial Neural Network and Adaptive Neuro Fuzzy Inference System techniques are evaluated as relatively similar. It is found that Radial Basis Functions constructed exhibit high performance than Multi Layer Perception, Adaptive Neuro Fuzzy Inference System and Multiple Regression for predicting S%. The performance comparison shows that Soft Computing paradigm is a promising tool for minimizing uncertainties in financial time series data. Further Soft Computing also minimizes the potential inconsistency of correlations.

Full Text:



Computer and Information Science   ISSN 1913-8989 (Print)   ISSN 1913-8997 (Online)
Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the '' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.