Text Document Pre-Processing Using the Bayes Formula for Classification Based on the Vector Space Model

Dino Isa, Lee Lam Hong, V. P. Kallimani, R. Rajkumar


This work utilizes the Bayes formula to vectorize a document according to a probability distribution based on keywords reflecting the probable categories that the document may belong to. The Bayes formula gives a range of probabilities to which the document can be assigned according to a pre determined set of topics (categories). Using this probability distribution as the vectors to represent the document, the text classification algorithms based on the vector space model, such as the Support Vector Machine (SVM) and Self-Organizing Map (SOM) can then be used to classify the documents on a multi-dimensional level, thus improving on the results obtained using only the highest probability to classify the document, such as that achieved by implementing the naïve Bayes classifier by itself. The effects of an inadvertent dimensionality reduction can be overcome using these algorithms. We compare the performance of these classifiers for high dimensional data.  

Full Text:


DOI: http://dx.doi.org/10.5539/cis.v1n4p79

Computer and Information Science   ISSN 1913-8989 (Print)   ISSN 1913-8997 (Online)
Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.