Performance of Surface Immobilized RGDC 13–93 Bioactive Glass Fiber Rafts and Scaffolds with MLO-A5 Osteogenic Cells In Vitro

Vernon Christopher Modglin, Roger F Brown


The aim of this study was to evaluate the ability of 13–93 bioactive glass constructs with surface immobilized peptide Arg-Gly-Asp-Cys (RGDC) to support the growth and differentiation of mouse MLO-A5 cells, an established osteogenic cell line. The construct types tested included 13–93 glass fiber rafts and fiber scaffolds possessing a surface with covalently bonded RGDC and seeded with MLO-A5 cells cultured for intervals up to 5 days. The RGDC treated rafts showed about a 3-fold higher cell attachment and about an 8-fold higher cell growth compared to control rafts. The RGDC treated scaffolds had an estimated 2-fold higher cell abundance than untreated control scaffolds. Protein measurements indicated a 1.6-fold higher level of cell growth on the RGDC coated scaffolds compared to controls during the incubation. Alkaline phosphatase activity, a key marker of osteoblast differentiation, was 2.3-fold higher at day 5 on RGDC scaffolds compared to controls. Collectively, the results indicate that the 13–93 glass fiber rafts and scaffolds with immobilized RGDC enhance the attachment, growth, and differentiation of MLO-A5 osteogenic cells and that bioactive glass scaffolds with biomimetic surfaces could potentially be effective for enhanced bone tissue engineering applications.


Journal of Materials Science Research   ISSN 1927-0585 (Print)   ISSN 1927-0593 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the '' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.


images_120. proquest_logo_120