Electrical Characteristics Cufe2o4 Thick Film Ceramics with Different Glass Concentrations Fired at 1000 °C for Negative Thermal Coefficient (Ntc) Thermistor

Wiendartun Wiendartun, Dani Gustaman Syarif

Abstract


Fabrication of CuFe2O4 thick film ceramics utilizing Fe2O3 derived from yarosite using screen printing technique for NTC thermistor has been carried out. Effect of glass frit addition (0, 2.5, 5 weight %) has been studied. X-ray diffraction analyses (XRD) was done to know crystal structure and phases formation. SEM analyses were carried out to know microstructure of the films. Electrical properties characterization was done through measurement of electrical resistance at various temperatures (room temperature to 100°C). The XRD data showed that the films crystalize in tetragonal spinel. The SEM images showed that glass frit addition made the grain size smaller. Electrical data showed that the larger the glass frit concentration, the larger the resistance, thermistor constant and sensitivity. From the electrical characteristics data, it was known that the electrical characteristics of the CuFe2O4 thick film ceramics followed the NTC characteristic. The value of B and RRT of the produced CuFe2O4 ceramics namely B = 2215-2807oK and rRT = 6,9-16,7 M Ohm, fitted market requirement.

Full Text: PDF DOI: 10.5539/jmsr.v1n3p70

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Journal of Materials Science Research   ISSN 1927-0585 (Print)   ISSN 1927-0593 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

------------------------------------------------------------------------------------------------------------------------------

images_120. proquest_logo_120 doaj_logo_new_120