On the Operator $\circledast^{k}$ Related to Heat Equation

Wanchak Satsanit, Amnuay Kananthai


In this paper, we study the equation
$$\frac{\partial}{\partial t}\,u(x,t)+c^2(-\circledast)^{k} u(x,t)=0 $$ with the initial condition
for $x\in\mathbb{R}^n$-the $n$-dimensional Euclidean space. The
operator $(\circledast)^{k} $ is operator iterated $k$ times ,
defined by
 $p+q=n$ is the dimension of the Euclidean space
$\mathbb{R}^n$, $u(x,t)$ is an unknown function for
$(x,t)=(x_1,x_2,\ldots,x_n,t)\in \mathbb{R}^n\times (0,\infty)$,
$f(x)$ is the given generalized function , $k$ is a positive integer
and $c$ is a positive constant. Moreover, if we put $q=0$ and
$k=1$we obtain the solution of equation.
t}\,u(x,t)-c^2\triangle^3u(x,t)=0$$ Which is related to the
triharmonic heat equation.\\

Full Text:


DOI: https://doi.org/10.5539/jmr.v2n2p20

License URL: http://creativecommons.org/licenses/by/4.0

Journal of Mathematics Research   ISSN 1916-9795 (Print)   ISSN 1916-9809 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.