Nonlinear Parabolic Equation on Manifolds

Gladson Antunes, Ivo F. Lopez, Maria Darci G. da Silva, Luiz Adauto Medeiros, Angela Biazutti

Abstract


In this work we investigate the existence and the uniqueness of solution for a nonlinear differential equation of parabolic type on the lateral boundary $\Sigma$ of a cylinder $Q$, cf. (1). An important part of our study is to transform this initial value problem into another one whose differential operator equation is of the type
\[
u_{t}+a\left({\displaystyle\int_{\Gamma}}udx\right)  \mathcal{A}%
u-\Delta_{\Gamma}u+u^{2k+1}=f \,\, \text{on} \,\, \Sigma,
\]
cf. (9), where $k$ is a positive integer. The operator $\mathcal{A}$ acts in Sobolev spaces on $\Gamma$, boundary of $\Omega$. The initial value problem (9) will be studied in Section $4$. Thus, we obtain  the existence and the uniqueness of weak solution for (9).

Full Text: PDF DOI: 10.5539/jmr.v6n1p85

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Journal of Mathematics Research   ISSN 1916-9795 (Print)   ISSN 1916-9809 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

doaj_logo_new_120 proquest_logo_120images_120.