Cylinders Through Five Points: Computational Algebra and Geometry
- Daniel Lichtblau
Abstract
We address the following question: Given five points in \(\mathbb{R}^3\), determine a right circular cylinder containingthose points. We obtain algebraic equations for the axial line and radius parameters and show that these give six solutions in the generic case. An even number (0, 2, 4, or 6) will be real valued and hence correspond to actual cylinders in \(\mathbb{R}^3\). We will investigate computational and theoretical matters related to this problem. In particular we will show how exact and numeric Gr{\" o}bner bases, equation solving, and related symbolic-numeric methods may be used to advantage. We will also discuss some applications.
- Full Text: PDF
- DOI:10.5539/jmr.v4n6p65
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org