Stable $3$-Spheres in $\mathbb{C}^{3}$
- Isabel Salavessa
 
Abstract
By only using spectral theory of the Laplace operator on spheres, we prove that the unit 3-dimensional sphere of a 2-dimensional complex subspace of $\mathbb{C}^3$ is an $\Omega$-stable submanifold with parallel mean curvature, when $\Omega$ is the K\"{a}hler calibration of rank $4$ of $\mathbb{C}^3$.-  Full Text: 
 PDF 
                            
                     - DOI:10.5539/jmr.v4n2p34
 
Index
- ACNP
 - Aerospace Database
 - BASE (Bielefeld Academic Search Engine)
 - Civil Engineering Abstracts
 - CNKI Scholar
 - DTU Library
 - EconPapers
 - Elektronische Zeitschriftenbibliothek (EZB)
 - EuroPub Database
 - Google Scholar
 - Harvard Library
 - IDEAS
 - Infotrieve
 - JournalTOCs
 - MathGuide
 - MathSciNet
 - Open policy finder
 - RePEc
 - ResearchGate
 - Scilit
 - Technische Informationsbibliothek (TIB)
 - The Keepers Registry
 - UCR Library
 - Universe Digital Library
 - WorldCat
 
Contact
- Sophia WangEditorial Assistant
 - jmr@ccsenet.org