Stable $3$-Spheres in $\mathbb{C}^{3}$
- Isabel Salavessa
Abstract
By only using spectral theory of the Laplace operator on spheres, we prove that the unit 3-dimensional sphere of a 2-dimensional complex subspace of $\mathbb{C}^3$ is an $\Omega$-stable submanifold with parallel mean curvature, when $\Omega$ is the K\"{a}hler calibration of rank $4$ of $\mathbb{C}^3$.- Full Text: PDF
- DOI:10.5539/jmr.v4n2p34
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org