Supersymmetric Lie Algebra

Jacob M Schreiber


This work is an investigation into the structure and properties of Lie hypermatrix algebra generated by a semisimple basis. By using new algebraic tools; namely cubic hypermatrices I obtain an algebraic structure associated with the basis of a semisimple Lie algebra, and I show that the semisimple Lie basis is a generator of infinite periodic semisimple hypermatrix structures, that has a classical Lie algebra decomposition (Bourbaki, 1980; Humphreys, 1972; Serre, 1987); specifically a set of Lie algebras composed of hypermatrices. The generators of higher dimensional semisimple Lie algebra are shown to be special supersymmetric, anti-symmetric and certain skew-symmetric hypermatrices.

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Journal of Mathematics Research   ISSN 1916-9795 (Print)   ISSN 1916-9809 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the '' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.