On Linearized Korteweg-de Vries Equations

Alfredo Villanueva


Korteweg-de Vries equations (KdV) provide a way of modeling waves on shallow water surfaces. These equations, begun by John Scott Russell in 1834 through observation and experiment, are a type of nonlinear differential equations. Originating with constant coefficients, they now include time-dependent coefficients, modeling ion-acoustic waves in  plasma and acoustic waves on a crystal lattice, and there is even a connection with the Fermi-Pasta-Ulam problem. Most of the solutions are given by solitons or by numerical approximations. In this work we study a linearized KdV equation with time-dependent coefficients (including fifth-order KdV) by using a special ansatz substitution.

Full Text:


DOI: http://dx.doi.org/10.5539/jmr.v4n1p2

Journal of Mathematics Research   ISSN 1916-9795 (Print)   ISSN 1916-9809 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.