Total Edge Irregularity Strength of q Tuple Book Graphs


  •  Lucia Ratnasari    
  •  Sri Wahyuni    
  •  Yeni Susanti    
  •  Diah Junia Eksi Palupi    

Abstract

Let G(V, E) be a simple, undirected, and finite graph with a vertex set V and an edge set E. An edge irregular total k-labelling is a function f from the set V \cup E to the set of non-negative integer set (1, 2, ... , k) such that any two different edges in E have distinct weights. The weight of edge xy is defined as the sum of the label of vertex x, the label of vertex y and the label of edge xy. The minimum k for which the graph G can be labelled by an edge irregular total k-labelling is called the total edge irregularity strength of G, denoted by tes(G). We have constructed the formula of an edge irregular total k-labelling and determined the total edge irregularity strength of triple book graphs, quadruplet book graphs and quintuplet book graphs. In this paper, we construct an edge irregular total of k-labelling and show the exact value of the total edge irregularity strength of q tuple book graphs.


This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1916-9795
  • ISSN(Online): 1916-9809
  • Started: 2009
  • Frequency: bimonthly

Journal Metrics

  • h-index (December 2020): 21
  • i10-index (December 2020): 64
  • h5-index (December 2020): N/A
  • h5-median (December 2020): N/A

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )

Contact