A Simulation Study Comparing Knot Selection Methods With Equally Spaced Knots in a Penalized Regression Spline
- Eduardo Montoya
- Nehemias Ulloa
- Victoria Miller
Abstract
Penalized regression splines are a commonly used method to estimate complex non-linear relationships between two variables. The fit of a penalized regression spline to the data depends on the number of knots, knot placement, and the value of the smoothing parameter. In this paper, we use a simulation study to compare knot selection methods with equidistant knots in a penalized regression spline model. We found that one method generally performed better than others. The results provide guidance in selecting the number of equidistant knots in a penalized regression spline model.- Full Text: PDF
- DOI:10.5539/ijsp.v3n3p96
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org