Visualizing State Identification in Auto-Regressive Hidden Markov (ARHMM) Models With the Forward and Backward Algorithms Using Excel
- William. H. Laverty
- Ivan. W. Kelly
Abstract
Earlier articles, Laverty, Miket, Kelly (2002c), Laverty and Kelly (2019) used Excel to simulate Hidden Markov models and calculate the probabilities of the unknown states using the forward and backward algorithms (Rabiner, 1989). In those articles, independence between observations in each state were assumed. In many situations, however, the assumption of independence within states cannot be made. A more appropriate model for the data in this case would be an Autoregressive Hidden Markov model which accounts for serial correlation within states. In this article, a two-state ARHMM will be simulated with the forward-backward algorithm used to calculate conditional state probabilities given the observed data.
- Full Text: PDF
- DOI:10.5539/ijsp.v8n5p25
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org