Medical Intervention for Disease Stages Using Game Theory, Markov Chains, and Bayesian Inference
- Ahmed Merie
- Myron Hlynka
Abstract
In this paper, we study the progression of disease in the body, using Markov chains. We analyze the problem using game theory, and we use the results to estimate initial probabilities for our transition matrices. We also use Bayesian methods to obtain transition probabilities. We present three examples to explain how this process works.
- Full Text: PDF
- DOI:10.5539/ijsp.v8n4p60
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org