Impact of New Natural Biostimulants on Increasing Synthesis in Plant Cells of Small Regulatory si/miRNA With High Anti-Nematodic Activity

Victoria Anatolyivna Tsygankova, Galyna Alexandrovna Iutynska, Anatoliy Pavlovych Galkin, Yaroslav Borisovych Blume

Abstract


Plant endoparasitic cyst nematode Heterodera schachtii Schmidt, gallic nematode Meloidogyne incognita and stem nematode Ditylenchus destructor damage various agricultural crops. The application of ecologically safe natural biostimulants with bioprotective properties is a newer approach for increasing plant resistance to parasitic nematodes. The molecular-genetic analysis of biostimulants action on plant genome is necessary for creation of new effective bioregulators for plant protection against phytopathogenic organisms. In our field and greenhouse experiments, we investigated the influence of new natural biostimulants Avercom and its derivatives on plant protection against nematodes Meloidogyne incognita and Ditylenchus destructor. Considerable increase of resistance to nematodes and productivity of cucumber and potato were observed for plants treated by biostimulant Avercom and its derivatives. Impact of biostimulants Radostim-super and Avercom on increase of resistance of sugar beet and cucumber sprouts to nematodes Heterodera schachtii and Meloidogyne incognita was studied in the laboratory conditions. Comparative analysis of morpho-physiological signs of control and experimental plants showed that plants treated by Radostim-super and Avercom were more viable and resistant to these nematodes as compared to control sprouts. In the molecular-genetic experiments, we studied the impact of these biostimulants on inducing synthesis of small regulatory si/miRNA, which plays key role in plant immune protection. Using method Dot-blot hybridization we studied degree of homology between si/miRNA with mRNA populations, isolated from plants untreated and treated with new natural biostimulants. We found considerable difference in the degree of homology (6-28%) between populations of mRNA and si/miRNA from nematode-infected plants that were either untreated or treated with biostimulants. We have also investigated silencing of translation of mRNA activity of si/miRNA in the wheat embryo cell-free system of protein synthesis. In these experiments, we found high inhibitory activity (38-65%) of si/miRNA from plants treated by biostimulants as compared to low inhibitory activity (15-20%) of si/miRNA from untreated plants. Obtained differences in the degree of homology between populations of mRNA and si/miRNA from untreated and treated with biostimulants plants, which were infected by nematode, and also the high inhibitory activity of si/miRNA from plants treated by biostimulants confirm that these biostimulants induce synthesis of anti-nematodic si/miRNA in plants, resulting in considerable increase of their resistance to these phytopathogens.


Full Text: PDF DOI: 10.5539/ijb.v6n1p48

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

International Journal of Biology   ISSN 1916-9671(Print)   ISSN 1916-968X  (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.