On the Trigonometric Description of the Michelson-Morley Experiment


  •  Jiri Stavek    

Abstract

One formula with two trigonometric corrections describing the round trip of the beams in the Michelson-Morley experiment is presented. The first trigonometric correction describes the round trip path of those beams, while the second trigonometric correction describes the trigonometric geometric mean of the two-way speed of those beams. This formula gives the null fringe shift result for the first order experiments (Fizeau experiment, Hoek experiment), the null fringe shift result for the second order experiment (Michelson-Morley experiment), and predicts a measurable fringe shift result for the fourth order experiment. This trigonometric model can be tested experimentaly by the advanced LIGO (Laser Interferometer Gravitational-Waves Observatory) technology with three arms separated by the angle π/4 and the longitudinal arm directed to the CMB rest frame in the direction to the constellation Crater (known in the Greek mythology as the Cup of the god Apollo). This proposed fourth order experiment can be named as the advanced LIFE (Laser Interferometer Fringe Enigma) experiment. The published predictions before the arrival of experimental data from the advanced LIFE experiment can estimate the power of our models.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1916-9639
  • ISSN(Online): 1916-9647
  • Started: 2009
  • Frequency: semiannual

Journal Metrics

Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19

Learn more

Contact