Comments on Einstein’s Explanation of Electrons, Photons, and the Photo-Electric Effect

Salama Abdelhady

Abstract


According to an entropy approach and by reviewing the similarity between laws characterizing the flow of heat and electric charges, electric charges were defined as electromagnetic waves that possess an electrical potential or simply as ionized photons. Accordingly, the flow of electrons was defined as a simultaneous flow of particulate energy and wave energy. Such definitions led to clear the confusions of duality properties of electrons and light waves, conflicts in the SI system of units and to explain the difference between the calculated drift speed of electrons and the speed of electricity or charges in conductors. However, Einstein considered the electron to be a negative charge of unknown nature during his analysis of the photoelectric effect. Einstein presented his hypothesis that light may behave as a particle to find a plausible explanation of the photoelectric effect. He found the measured cutoff frequency of light below which light might not eject electrons from metal-surfaces in photocells regardless of how much light is shone on the surface as a proof of truth of his hypothesis. Such frequency may be explained also, according to the previously introduced definitions, as the minimum energy quanta that may gain a quantized potential in photocells. This explanation may find plausible explanations of the found measurements of the photoelectric effects for different metal surfaces, stopping voltages into photocells and the photoelectric effect of X-rays. Einstein’s hypothesis of the photoelectric effect failed to find plausible explanations of such measurement results. According to the principles of conservation of momentum, there is a minimum quantity of photons that may lead to bouncing an atomic electron out of its orbit. So, considering Einstein’s theory as a perfect hypothesis that explains the photoelectric effect may be a misconception.

Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Applied Physics Research   ISSN 1916-9639 (Print)   ISSN 1916-9647 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

doaj_logo_new_120 images_120. proquest_logo_120 lockss_logo_2_120 udl_120.