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Abstract 
What would be the impacts of a viable market for corn stover? A partial equilibrium model and a linear 
programing model were used to determine to what extent the existence of a viable market for corn stover would 
affect the traditional corn-soybean crop rotation in the US. We find that with government support production of 
biofuel from corn stover could significantly increase. That boosts profitability of farming corn in combination 
with harvesting corn stover versus soybeans. We show that if corn stover is demanded for biofuel, then a major 
shift will be observed in crop rotations in the US. 

Keywords: soybeans, corn, corn stover, cellulosic biofuel, land use, corn-soybean rotation, partial equilibrium  

1. Introduction 
1.1 Importance  
First generation biofuels and their impacts on: 1) greenhouse gas emissions, 2) oil imports, and 3) markets for 
agricultural commodities and food prices have been examined from different angles in recent years. These 
studies showed that first generation biofuels, which are produced from food crops will not be able to replace a 
large portion of oil-based liquid fuels, because their rapid expansion could cause adverse impacts on food supply 
(Abbott, Hurt, & Tyner, 2008; Abbott, Hurt, & Tyner, 2011; Trostle, 2008; Zilberman et al., 2013) and/or induce 
major unintended land use changes which in turn will lead to increases in greenhouse gas emissions (Hertel, 
2010; Tyner & Taheripour, 2012). Instead, second-generation biofuels produced from forest or crop residues such 
as wood chips, corn stover, or wheat straw offer an alternative to first generation biofuels. These residue-based 
biofuels could have minor impacts on both food prices and land use change. In addition, they could make a 
major contribution in greenhouse gas emission reduction targets if removed in a sustainable manner (English et 
al., 2013). Another advantage for second-generation biofuels produced from agricultural residues is that they 
provide a potential new source of income for farmers (Thompson & Tyner, 2013).  

If second generation biofuels became economically viable and a massive volume of biofuels are produced from 
agricultural residues, it then can have major impacts on agricultural commodity markets. Corn stover is a major 
and abundant feedstock in the USA, which is expected to be used in biofuel production, if the technology 
becomes economically viable. Converting corn stover to biofuels, if a significant market develops, can affect 
profitability of corn production versus other crops produced in the USA, in particular. Thompson and Tyner 
suggest that if a viable corn stover market existed, it could have a large impact on farmers’ crop rotations and 
land allocation decisions. However, that research was done at the farm level with a given set of crop prices and 
ignored interactions between farm and market level variables. The purpose of this paper is to determine to what 
extent producing biofuels from corn stover can affect demands for and supplies of corn and soybeans and their 
market prices. In addition, it examines to what extent producing biofuels from corn stover could affect switching 
from corn-soybean rotation to continuous corn.  

To determine how a corn stover market would impact corn and soybean markets, a partial equilibrium model was 
developed which links corn, soybeans, corn stover, ethanol, dried distiller grains, and gasoline markets at the 
USA national level and determines market-clearing prices at different crude oil prices. The resulting prices were 
used in a linear programming model to determine how farmers would allocate their land. 
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Converting corn stover to biofuel could change relative profitability of corn and soybeans in favor of corn, when 
corn stover price is higher than its production costs. Production costs of corn stover include fertilizer costs to 
maintain productivity of land after stover removal and collection, storage, and transportation costs (Thompson & 
Tyner, 2013). These authors have concluded that if a viable corn stover market existed, it could have a large 
influence on farmer’s crop rotation in favor of corn-corn rotation. However, they ignored the fact that relative 
prices of corn and soybeans could be different in the presence of a viable market for corn stover.  

Consider a case where converting corn stover to biofuel is profitable, either due to market forces or government 
supports. In this case, farmers who produce corn and soybeans will bring profitability of corn stover collection 
into account. When corn stover production is a profitable operation for a farmer, in each planting period he/she 
will compare gains from a joint production of corn and corn stover with profits from soybean production at given 
prices (Note 1). In this case, if the joint profits from corn production and corn stover is higher than the profit 
from soybean production, then corn will be produced. If a large group of farmers decides to follow this choice, 
then the corn-corn rotation will increase among farmers, which will lead to an increase in corn production and a 
reduction in soybean production, other factors being constant. This could affect relative prices of corn and 
soybeans at the market level.  

In this paper we first develop a partial equilibrium model to examine impacts of converting corn stover to 
ethanol on markets for ethanol, gasoline, corn, corn stover, and soybeans at the USA aggregation level. The 
model developed in this paper is based on the model developed and used by (Tyner & Taheripour, 2008). Then 
we will feed the results of this model into the Purdue Crop/Livestock Linear Programing (PCLP) model (Doster 
et al., 2008) to examine farmers’ land allocation behavior in the presence of a viable market for corn stover. We 
test the sensitivity of the land allocation process at the farm level with respect to changes in key economic 
factors.  

2. Method and Implemented Models  
2.1 Partial Equilibrium Model 
The partial equilibrium model developed in this paper is an extended version of the model developed by and 
used in several other articles (Taheripour & Tyner, 2008; Tyner & Taheripour, 2007; Tyner, Taheripour, & Perkis 
2010; Tyner, Taheripour, & Hurt August, 2012). The original model follows an integrated partial equilibrium 
modeling structure which displays linkages among crude oil, gasoline, ethanol, and corn markets. The model 
captures the demand and supply sides of the corn, corn ethanol, dried distiller grains, and gasoline markets. The 
demand side of the corn market consists of three major corn users: foreign users (qcxd), domestic uses for food 
and feed (qcdd), and the corn ethanol industry (qced). The foreign and domestic demands for food and feed are 
modeled using constant price elasticity functional forms. The corn demand for the ethanol industry is qced = y.qse. 
Here, y shows the corn-ethanol conversion factor and qse is quantity of ethanol supply. Hence, total demand for 
corn is: qcd = qcxd + qcdd + qced.  

On the supply side, a constant return to scale Cobb-Douglas production function is used to model the supply side 
of the corn market. In this production function, capital, labor, land, and a composite input (which represent 
fertilizer, pesticides, seeds, energy and other items) are used to produce corn. In this function all inputs, except 
the composite input, are constant in the short-run. This production function is used to determine the supply for 
corn, qcs.  

In this model, in the short-run the demand for liquid fuel, ggd, only responds to its own price using a constant 
price elasticity functional form. However, in the long-run, demand can grow with income and population. The 
supply side of the fuel market is comprised of gasoline producers and ethanol producers. Gasoline supply is 
produced from crude oil. The supply of gasoline, qgos, is a function of its price and the price of crude oil. It 
follows a constant elasticity functional form as well. Ethanol is produced from corn. The supply of ethanol, qes, is 
a function of its own price and the price of corn following a constant elasticity functional form as well. In this 
model it is assumed that every gallon of ethanol is presumed to contain 70% of the energy of a gallon of gasoline. 
Hence, total supply of gasoline equivalent is: qgs = qgos + 0.7*qes.  

Distiller's Dried Grains with Solubles (DDGS) is a co-product of the ethanol industry. DDGS can be used as a 
substitute for corn and to some extent soybean meal in the livestock industry and also alleviate impacts of 
ethanol production on the corn market. DDGS can increase profitability of ethanol industry as well. As a 
substitute for corn, DDGS covers a portion of corn demand: qDDGS = ϒ.qced. Here qDDGS is the quantity of DDGS 
produced and ϒ is the corn-DDGS conversion factor. The model evaluates profitability of the ethanol industry 
and assumes that this industry will expand/contract until profits reach zero. Given this assumption and according 
to the predetermined supply and demand elasticities, the model determines equilibrium prices and their 
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corresponding quantities for corn, ethanol, and gasoline and other endogenous variables for given exogenous 
variables defined in the model (such as crude oil price).  

Several new components are introduced into this partial equilibrium model to handle new markets for soybeans, 
corn stover, and a biofuel produced from corn stover. The first component added to the model is a drop-in biofuel 
named bio-gasoline. This drop-in biofuel can be produced from corn stover with the following supply function: 
qgstov = Aestov(ppg)gstov(pstov)-gstov. The energy content of bio-gasoline is assumed to be equal to the energy content of 
gasoline. In the presence of bio-gasoline, total supply of gasoline will be equal to: qgs = qgos + 0.7*qes+ qgstov. 
Similar to ethanol industry, the bio-gasoline industry will expand until profits reach zero. Profits per gallon of 
bio-gasoline are estimated by: πs = pg - capstov –varstov. Here, capstov and varstov are capital and variable costs per 
gallon of bio-gasoline. At equilibrium πs=0.  

In the new model it is assumed that the capital costs of producing corn ethanol is zero when markets operate 
below the existing production capacity. However, if an expansion in capacity is required the model takes into 
account the required capital costs.  

The supply of and demand for corn stover are added to the model as well. The supply of stover is presented by: 
qstov = Astov(pstov /cstov) estov. Here qstov and pstov represent supply and market price of stover, Astov is the constant term, 
cstov stands for production costs of stover per metric ton (including all costs items such as collection costs, costs 
to maintain land productivity, and transportation costs), and estov indicates price elasticity of supply. The 
production costs are divided into two segments of fixed and variable costs. The variable costs are assumed to be 
sensitive to changes in crude oil price to cover impacts of changes in crude oil price on collection and 
transportation costs of stover. The corn stover total production costs follows an increasing trend from $68 per ton 
at $60 per gallon of crude oil to about $100 per ton at $160 crude oil price. The demand for corn stover is 
determined by bio-gasoline production with the following equation: qdstov= qgstov (Vstov). Here Vstov is the 
conversion rate of corn stover to bio-gasoline. For details about the cost structure of the bio-gasoline industry 
and corn stover activity see Fiegel (Fiegel, 2012).  

A market for soybeans is also added to the model. In this market, the demand for soybeans is defined as: 
qdsoy=Asoy(1/(psoy)esoy). Here qdsoy and psoy represent demand for soybeans and its price, Asoy shows the constant 
term of the demand function, and esoy indicates the own price elasticity of demand for soybeans. The model 
determines the supply of soybeans (qssoy) using the allocated land to this product (lsoy) from the following 
equation: qssoy=lsoy.yieldsoy. Here, yieldsoy represents soybean yield. The model assumes that total supply of land 
(ltot) for corn and soybean production is fixed in the short-run. Hence, it determines areas under soybean 
production using the following relationship: lsoy=ltot-( qcs /yieldcorn).  

Finally, the model imposes a zero profit condition to allocate land between corn and soybeans. Indeed the model 
assumes that farmers maximize their profit when they allocate their land between corn and soybeans. It is 
assumed that at equilibrium: πsoy=πcorn+πstov. 

The revised model is calibrated using data obtained for 2010 for the US economy. For details see Fiegel (Fiegel, 
2012). Then the model is solved for several alternative crude oil prices (an exogenous key variable of the model) 
ranging from $60 per barrel to $160 per barrel. For each crude oil price two alternative policies are tested. The 
first policy assumes that the government will not support converting corn stover to biofuel. The second policy 
assumes that the government will pay a fixed subsidy of $1.01 per gallon of bio-gasoline. Note that in both cases 
mentioned here we assumed that the government pays no subsidy for corn ethanol.  

2.2 Farm Level Model 
To examine impacts of having a viable market for corn stover on crop rotation at a farm level the PCLP model 
which was originally developed at Purdue University is used and modified. PCLP is a linear programming model 
which helps determine profit-maximizing decisions for a given farm according to its possible crop activities, its 
existing resources, and according to current prices of commodities and input costs. The PCLP model takes 
specific data such as land, labor, capital, crop yields, crop prices, and detailed input costs and determines 
activities which maximize farmer’s profits. To adapt this model a new activity called stover collection is added to 
this model. This activity covers all steps and their corresponding costs which are required to collect and sell corn 
stover to a bio-refinery at current prices. These steps and their corresponding costs are defined in detail in (Fiegel, 
2012; Thompson & Tyner, 2013). Then the model is solved for a group of farmers who participated in the Top 
Crop Farmer Workshops in 2007-2010 under two alternative cases of with and without corn stover activity to 
find out their optimal choices under these two different cases. To tune the PCLP model with market conditions in 
the presence of corn stover activity, prices obtained from the partial equilibrium model are used. Then the 
sensitivity of the results with respect to changes in the assumptions and parameters behind the corn stover 
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activity are examined.  
3. Results 
3.1 Impacts at Market Level 
The simulation results cover a wide range of cases for many variables under all alternative scenarios developed 
for this paper. In what follows, we only present a selection of key results which are important for our analyses. 
Two key variables are outputs of corn ethanol and stover bio-gasoline under alternative cases. The simulation 
results are presented in Table 1.  

 

Table 1. Key simulation results obtained from partial equilibrium model 

Description Base 2010 Crude oil scenarios 

Crude oil price ($/barrel) 76.69 60.00 80.00 100.00 120.00 140.00 160.00

Case I: With no subsidy  
Ethanol supply (billion gallons)  13.23 7.00 12.06 13.71 14.25 16.70 18.77

Bio-gasoline supply (billion gallons) 0.00 0.01 0.11 0.56 1.60 2.55 3.49

Corn supply  12.45 11.19 12.21 12.53 12.64 13.16 13.61

Available corn stover (million tons) 348.52 313.22 341.74 350.80 354.04 368.54 381.01

Removal rate of corn stover (percent) 0.00 0.04 0.51 2.66 7.51 11.51 15.28

Soybeans supply (billion bushels) 3.33 3.69 3.40 3.31 3.27 3.13 3.00

Corn harvested area (million acres) 81.40 73.16 79.82 81.93 82.69 86.08 88.99

Soybeans harvested area (million acres) 76.60 84.84 78.18 76.07 75.31 71.92 69.01

Corn price ($/bushel) 5.18 4.22 5.00 5.32 5.39 5.79 6.13

Corn stover price $/ton) 0.00 26.14 47.00 68.81 88.69 101.61 112.75

Soybeans price ($/bushel) 11.30 9.21 10.85 11.46 11.69 12.82 13.92

Soybean to corn price ratio 2.18 2.18 2.17 2.15 2.17 2.21 2.27

Case II: With $1.01 subsidy    

Ethanol supply (billion gallons)  13.23 6.34 11.88 14.31 15.65 18.20 20.24

Bio-gasoline supply (billion gallons) 0.00 2.32 4.17 6.33 8.44 9.67 10.67

Corn supply  12.45 11.07 12.27 12.89 13.31 13.87 14.32

Avilable corn stover (million tons) 348.52 309.93 343.66 360.86 372.67 388.41 400.86

Removal rate of corn stover (percent) 0.00 12.47 20.20 29.25 37.74 41.48 44.37

Soybeans supply (billion bushels) 3.33 3.72 3.38 3.20 3.08 2.92 2.80

Corn harvested area (million acres) 81.40 72.39 80.27 84.28 87.04 90.72 93.63

Soybeans harvested area (million acres) 76.60 85.61 77.73 73.72 70.96 67.28 64.37

Corn price ($/bushel) 5.18 4.10 4.66 4.70 4.49 4.75 4.99

Corn stover price $/ton) 0.00 83.11 98.11 111.76 123.75 132.68 140.97

Soybeans price ($/bushel) 11.30 9.05 10.97 12.20 13.17 14.65 16.00

Soybean to corn price ratio 2.18 2.21 2.35 2.60 2.93 3.08 3.21

 

Table 1 shows that the supply of bio-gasoline will be very limited at low levels of crude oil price in particular 
when the government does not support bio-gasoline production. However, with a bio-gasoline subsidy, the 
market will produce significant amounts of bio-gasoline especially at medium and higher crude prices. A similar 
impact would result from a mandate such as the Renewable Fuel Standard. For example, when the crude oil price 
is around $100 per barrel, bio-gasoline production will be about 0.56 billion gallons when no subsidy is paid, and 
it will be about 6.33 billion gallons with subsidy. The simulation results indicate that the supply of corn ethanol 
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3.2 Impacts at Farm Level 
To examine impacts of a viable market for corn stover at a farm level we tuned the PCLP model with market 
clearing prices obtained from the PE model as described above. We then made the following experiments for 
each farm to assess its response with respect to changes in key economic variables:  

i. Base case, no stover removal, 

ii. Base case, with stover removal with tuned market prices in the presence of bio-gasoline subsidy under 
status quo assumptions on tillage costs, soybean and corn yields, cost associated with corn stover activity, 
and harvesting technology,  

iii. No saving in tillage costs, 

iv. Change in yield due to change in rotation, known as yield drag, 

v. Reduction in corn stover price 

vi. Change in corn stover harvesting technologies, 

vii. Impacts of new harvesting technology but no savings in tillage costs. 

The first case provides a status quo situation where there is no market for corn stover. The second case evaluates 
impacts at farm level in the presence of a market for corn stover. In this case it is assumed that: 1) corn-corn 
rotation with stover removal reduces tillage costs by $25 per acre; 2) corn-corn rotation does not affect corn and 
soybean yields; 3) corn stover farm price and corn stover delivery price are about $85.40 per ton, and $111.80 
per ton, respectively; and 4) farmers will use the rake and bale system to remove corn stover. In cases iii to vii 
these basic assumptions are relaxed. In case iii it is assumed that corn-corn rotation with stover removal does not 
reduce tillage costs. Case iv takes into account the fact that corn-corn rotation can affect yield. In case v the farm 
level and delivery prices used in the base case are reduced by 20%. Case vi investigates impacts of using a new 
technology to remove corn stover. This technology is known as the corn-rower. Compared to the rake and bale 
system, this technology eliminates the need to rake the stover after harvesting corn and in general reduces the 
costs of stover activity (Fiegel, 2012). Finally, the last case assumes that farmers will use the corn-rower 
technology to harvest corn stover, but this technology does not reduce tillage costs.  

While the above experiments are tested for individual participant farmers, in what follows we report the results 
obtained from the pool of participant farmers. The key simulation results are shown in Table 2.  

 

Table 2. Land allocation patterns for alternative scenarios examined using PCLP model at farm level (figures are 
shares in total acreage in percent except otherwise noted) 

Description 
Case 

i 
Case 

ii 
Case 

iii 
Case 

iv 
Case 

v 
Case 

vi 
Case 
vii 

Corn-soybean acreage with no stover removal 42.0 3.6 3.6 3.6 4.3 3.6 3.6

Corn-corn acreage with no stover removal 14.7 1.3 1.3 0.8 1.3 1.3 1.3

Corn-soybean acreage with stover removal  0.0 12.2 27.9 13.8 21.5 18.2 27.4

Corn-corn acreage with stover removal 0.0 66.0 37.7 64.2 43.2 53.9 30.5

Soybeans acreage  42.0 15.8 28.5 16.4 28.4 21.8 33.8

Other uses 1.3 1.2 1.0 1.1 1.3 1.2 3.4

Total acreage participating in workshop 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Stover harvest acres  0.0 78.2 65.6 78.0 64.8 72.1 57.9

Stover removal rate (tons/acres)  0 1.18 1.01 1.15 0.99 1.93 1.57

 

Table 2 shows that in the base case when there is no stover removal activity, participant farmers allocate their 
land mainly to corn-soybean rotation or only prefer to produce soybeans. In this case farmers only allocate about 
14.7% of their land to the corn-corn rotation. However, when corn stover removal is introduced as a new option 
under the base case scenario farmers allocate about 66% of their land to the corn-corn rotation and remove stover 
from their land. In this scenario about 15.8% of available land will remain in corn-soybean rotation. In this case 
corn stover will be removed from 78.2% of available land at a rate of 1.18 tons per acre. This shows that if corn 
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Notes 
Note 1. In this paper it is assumed that corn and corn stover production is a single process and the farmer 
makes the decision at planting time. Of course a farmer can decide to produce corn at the planting time and 
later on he/she can decide whether to collect the corn stover or not. 
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