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Abstract

We propose an efficient algorithm for Raptor decoding, which reduces the computational complexity of the most
time-consuming steps in systematic decoding. Our proposed algorithm includes two aspects: First, to handle the
decoding failure of the Raptor decoding, we propose a scheme, which is called the No-Wrapup Failure Handling
scheme. It can resume the decoding process from where it fails after receiving a pre-defined number of additional
encoded symbols, and thus avoids the repetition of time-consuming steps in the decoding process. Second, in
order to reduce the time of finding the row with the minimum degree in the precode, we propose a Fast Min-
Degree Seeking (FMDS) scheme. FMDS automatically maintains and updates the row degrees of the precode when
converting the precode into an identity matrix through Gaussian elimination and Belief-propagation. Experimental
results show that, compared to other Raptor decoding schemes, the proposed scheme achieves a much shorter
decoding time, and can greatly speed up the data recovery in real-time applications.

Keywords: Raptor codes, LT codes, Digital Fountain codes, FEC

1. Introduction

Recently, digital Fountain codes have attracted significant attention. Digital Fountain codes are rateless and provide
forward error correction (FEC) to address the problem of losing packets in erasure channels under any channel
condition. They can produce infinite number of encoded symbols from the source symbols without any knowledge
of the channel, which makes them very suitable for wireless communications. Luby (2002) developed the first
practical class of rateless codes, called Luby Transform (LT) codes. Shokrollahi (2006) further extended the
LT codes to Raptor codes, which are a class of powerful rateless codes since they need very small overhead to
completely recover the source data with linear encoding/decoding time.

Due to their high recovery rate and low time complexity, Raptor codes have been included in the Third Generation
Partnership Project (3GPP) multimedia broadcast/multicast services (MBMS) (3GPP, 2007) and Digital Video
Broadcast-Handheld (DVB-H) (DVB, 2004) standards. Detailed description of Raptor codes can be found in
(Shokrollahi, 2006; 3GPP, 2007; DVB, 2004; IETF, 2007). In (Cataldi, Shatarski, Grangetto, & Magli, 2006),
the performance of LT codes and Raptor codes was compared for multimedia applications. In (Hussein, Oka, &
Lampe, 2008), a scheme for the early termination of decoding was proposed to avoid unnecessary message updates
and stop a decoding attempt within a fraction of an iteration. The performance of Raptor codes on arbitrary binary
input memoryless symmetric channels was investigated in (Etesami & Shokrollahi, 2006). Maximum-likelihood
decoding of Raptor codes over the binary erasure channel was discussed in (Kim & Chung, 2008). The problem of
Raptor codes design for binary-input additive white Gaussian noise was studied in (Cheng, Castura, & Mao, 2009).
Alexiou, Bouras and Papazois (2010) presented a complete study of the impact of Raptor codes in mobile multicast
transmission and Investigated the parameters that affect the optimal FEC code selection. In (Chen, Zhang, Lou, &
Chen, 2012), an adaptive code symbol assignment scheme based on Raptor codes was proposed for the secondary
user (SU) in a multichannel cognitive radio to maximize the throughput of SU. The permeable layer receiver (PLR)
and the individual post-repair mechanism with Raptor codes, in order to enhance the system performance for the
MBMS receiver, are studied in (Gasiba, Xu, & Stockhammer, 2008). In (Bouras, Kanakis, Kokkinos, & Papazois,
2012), the Raptor codes overhead requirements with different network conditions in 3GPP LTE MBMS streaming
services were investigated.
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Raptor decoding may fail even when the number of received encoded symbols is larger than the number of source
symbols (Shokrollahi, 2006; Shokrollahi & Luby, 2011; Stockhammer, Shokrollahi, Watson, Luby, & Gasiba,
2008). The 3GPP MBMS standard (3GPP, 2007) proposes an efficient implementation of Raptor decoding. How-
ever, when the decoding fails, Raptor decoder needs to restart the decoding process after collecting enough en-
coded symbols. Recently, there have been a few other studies (Mladenov, Nooshabadi, & Kim, 2011; Shi, Yang,
& Zhang, 2011) that provide implementation and improvements of the 3GPP decoding algorithm. In (Mladenov,
Nooshabadi, & Kim, 2011), a hardware implementation of the Raptor decoding algorithm is discussed. In (Shi,
Yang, & Zhang, 2011), an algorithm is proposed to handle the Raptor decoding failure in phase 2, and thus avoid
the repetition of phase 1. In this paper, we consider the case when the decoding process fails and provide a solution
to handle this problem.

1.1 Contributions of the Proposed Scheme

The most time-consuming part of the Raptor decoding scheme in 3GPP MBMS standard is the transformation
process for converting the precode into an identity matrix using Gaussian elimination (GE) and Belief-propagation
(BP) (3GPP, 2007). The transformation process consists of four phases as discussed in Section 2.4. We propose
the following two approaches to significantly reduce the computation time of phases 1 and 2 of the transformation
process, in order to improve the Raptor decoder efficiency. (i) For fast recovery from the decoding failure in phases
1 and 2, we propose a no-wrapup failure handling (NWFH) scheme in Section 3.1. The NWFH scheme resumes
the decoding process after receiving a pre-defined number of additional encoded symbols, instead of restarting the
decoding process from scratch in (3GPP, 2007). Thus, our scheme significantly reduces the decoding time because
phase 1 consumes about 90% of the entire decoding time (Mladenov, Nooshabadi, & Kim, 2011). Note that the
decoding algorithm in (Shi, Yang, & Zhang, 2011) handles the decoding failure in phase 2, while assuming that
the decoding process does not fail in phase 1. (ii) For second improvement, we propose a fast min-degree seeking
(FMDS) scheme in Section 3.2 to maintain and update the row degrees of matrix in each iteration of phase 1
automatically, instead of recalculating it. The FMDS scheme thus saves time spent in recalculating them at each
iteration.

The paper is organized as follows. Section 2 provides a brief discussion of the systematic Raptor codes used in
our schemes. Section 3 describes our proposed NWFH and FMDS schemes for Raptor decoding. In Section 4, we
compare the decoding performance of our proposed NWFH and FMDS schemes with other schemes, followed by
conclusions in Section 5.

2. Principles of Systematic Raptor Codes

The detailed description of Raptor codes can be found in (Shokrollahi, 2006; Shokrollahi & Luby, 2011). In this
section, we briefly describe the mathematical model of the systematic Raptor codec used in 3GPP MBMS (3GPP,
2007).

2.1 Systematic Raptor Codes

Raptor codes encode one block of source symbols at a time, where the size of each source symbol ℓ is suggested to
be within 1 to 1024 bytes in (3GPP, 2007). Different blocks may have different number (denoted as K) of source
symbols. Raptor code consists of two parts: a precode A as the outer code and the LT code as the inner code, where
A is a binary matrix consisting of a low-density parity check (LDPC) generation matrix (GLDPC), a high-density
parity check generation matrix (GHal f ) and a LT generation matrix (GLT ). Table 1 summarizes the symbols used in
this paper.

2.2 Raptor Encoder

It includes the following two steps (3GPP, 2007):

Step a) The precode [A]L×L has two functions. First, the constraint matrices of A, GLDPC and GHal f , ensure that
each source symbol is encoded at least once, which enables the decoder to recover every source symbol. Second,
[A]L×L contains the first K rows of the LT generation matrix [GLT ]N×L. As a result, the first K output symbols of
LT encoder correspond to the K source symbols. This makes the overall Raptor code systematic.

The Raptor encoder first encodes the K source symbols S [ j], j = 0, · · · ,K − 1 into L = K + S + H intermediate
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Table 1. Main parameters of raptor codes
Symbols Definitions

K The number of source symbols

S The number of LDPC symbols

H The number of Half symbols

L The number of intermediate symbols: L = K + S + H

ε Encoding overhead in percentage

N The number of encoded symbols: N = K(1 + ε)

N′ The number of received encoded symbols

M The number of rows in the precode A: M = K + S + N′

A Pre-coding matrix with dimension L × L in Raptor encoder and M × L
in Raptor decoder

ES I Encoding Symbol ID

S [i] The ith source symbol for i = 1, · · · ,K
C[i] The ith intermediate symbol for i = 1, · · · , L
E[i] The ith encoded symbol for i = 1, · · · ,N
E′[i] The ith encoded symbol for i = 1, · · · ,N′

D[i] Zero-valued symbols for i = 0, · · · , S +H−1, received encoded symbols
for i = S + H, · · · ,M

c[i] The original row index of current C[i] before column exchange of A

d[i] The original row index of current D[i] before row exchange of A

symbols C[i], i = 0, · · · , L − 1 by using the precode A:


C[0]
...

C[L − 1]

︸      ︷︷      ︸
[C]L×1

=


[GLDPC]S×K IS×S ∅S×H[
GHal f

]
H×(K+S )

IH×H

[GLT ]K×L


−1

︸                                    ︷︷                                    ︸
[A]L×L

•



∅S×1

∅H×1

S [0]
...

S [K − 1]

︸       ︷︷       ︸
[S R]L×1

(1)

The intermediate symbols C[i] generated by GLDPC and GHal f are called redundant symbols.

Step b) LT encoder is used on the intermediate symbols to generate the N ≥ K encoded symbols E[i], i =
0, · · · ,N − 1, as follows. Each encoded symbol is associated with an encoding symbol ID (ES I)i.

E[0]
...

E[N − 1]

︸       ︷︷       ︸
[E]N×1

=


g11 · · · g1L

...
. . .

...

gN1 · · · gNL

︸                 ︷︷                 ︸
[GLT ]N×L

•


C[0]
...

C[L − 1]

︸      ︷︷      ︸
[C]L×1

(2)

The submatrix [GLT ]K×L of A is included as the first K rows of [GLT ]N×L. This makes the first K encoded symbols
correspond to the K source symbols, that is, E[i] = S [i], for i = 0, · · · ,K − 1.

2.3 Raptor Decoder

Raptor decoder includes the following two steps (3GPP, 2007):

Step a) After receiving the N′ encoded symbols (N′ ≥ K), a precode [A]M×L is constructed, where M = N′+S +H,
to recover the intermediate symbols C[ j], j = 0, · · · , L − 1 as shown in 3. The first S + H rows in [A]M×L are the
same as in A in 1, and [GLT ]N′×L is generated using the ESI values of the N′ received encoded symbols. The rows
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in [GLT ]N×L corresponding to the lost encoded symbols are excluded from [GLT ]N′×L.


[GLDPC]S×K IS×S ∅S×H[
GHal f

]
H×(K+S )

IH×H

[GLT ]N′×L

︸                                  ︷︷                                  ︸
[A]M×L

•


C[0]
...

C[L − 1]

︸      ︷︷      ︸
[C]L×1

=



∅S×1

∅H×1

E′[0]
...

E′[N′ − 1]

︸         ︷︷         ︸
[D]M×1

(3)

Step b) After obtaining the intermediate symbols, the K source symbols S [ j] for j = 0, · · · ,K − 1 are recovered
using the K × L LT generator matrix:

S [0]
...

S [K − 1]

︸       ︷︷       ︸
[S ]K×1

=


g11 · · · g1L

...
. . .

...

gN1 · · · gNL

︸                 ︷︷                 ︸
[GLT ]K×L

•


C[0]
...

C[L − 1]

︸      ︷︷      ︸
[C]L×1

(4)

Source symbols are decoded directly from the corresponding received encoded symbols with ESI ¡ K. The missing
source symbols are decoded from the recovered intermediate symbols C using (4). To obtain C from (3), the
algorithm requires that [A]M×L over GF(2) has a full column rank (Shokrollahi, 2006; Shokrollahi & Luby, 2011).
Note that all the source symbols may not be recovered even when (N′ ≥ K). When (N′ < K), the systematic Raptor
decoder cannot decode all the intermediate and source symbols. Instead, it directly recovers the source symbols
from the corresponding received encoded symbols whose ESI ¡ K.

2.4 3GPP MBMS Decoding Algorithm

The decoding algorithm of 3GPP MBMS uses GE and BP to transform A to a L×L identity matrix after discarding
its last M − L rows. Since the computation efficiency of GE depends heavily on the sparsity of A, the BP operation
is performed to maintain its sparsity. This transformation process can be summarized into four phases as shown in
Figure 1 (3GPP, 2007).

Figure 1. Illustration of four phases to transform matrix A into an identity matrix
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In phase 1, the matrix A is converted to three submatrices: I, zero submatrix, and U as shown in Figure 1. In this
figure, V is an intermediate matrix. In the beginning of phase 1, V = A and I and U are Null matrices. For each
iteration, a row of V , with the minimum non-zero degree r, is chosen, where the degree of a row is defined as the
number of elements ‘1’ it has. Then, the chosen row is exchanged with the first row in V . All the columns of V are
reordered so that the first and the last r − 1 elements of the first row are ‘1’. Then, the other rows which have ones
in their first column are exclusive-ORed with the first row so that their columns become ‘0’. The rank of submatrix
I is increased by 1 and the number of columns in U is increased by r − 1. This process is repeated until the sum of
columns of I and U is equal to L. Phase 1 fails when no non-zero row remains in V before V disappears, that is,
the sum of columns of I and U is less than L and elements in all rows of V are zero.

In phase 2, the submatrix U is partitioned into Uupper and Ulower, where Uupper consists of the first i rows and Ulower

contains the remaining M − i rows. If the rank of Ulower is less than u, the decoding of phase 2 fails. Otherwise,
GE is performed on Ulower to transform it into an identity matrix with rank u. Then, the last M − L rows of [A]M×L

are discarded.

In phase 3, a precomputation matrix U′ with ceil(u/8) × 255 rows and u columns, is generated based on Iu. In
phase 4, the matrix U′ is used to zero out Uupper and thus converts A into the L × L identity matrix (please refer to
(3GPP, 2007) and (IETF, 2007) for details).

Successful decoding depends on the transformation process discussed above. The intermediate symbols C can
be decoded in the meantime, based on the row operations and row/column exchanges occurring during the trans-
formation process. Let c[i] and d[i], i = 0, · · · , L − 1, record the original row index of the ith row in C and D,
respectively. Initialize c[0] = 0, · · · , c[L − 1] = L − 1, and d[0] = 0, · · · , d[M − 1] = M − 1. The relationship
between the transformation process and decoding of C is summarized in Table 2:

Table 2. Relationship between the GE and decoding operations

GE operation Decoding operation

A[i′] = A[i] ⊕ A[i′], where A[i] repre-
sents the ith row of A

D[d[i′]] = D[d[i]] ⊕ D[d[i′]]

Exchange ith and i′th rows of A Exchange the values of d[i] and d[i′]

Exchange ith and i′th columns of A Exchange the values of c[i] and c[i′]

At the end of successful transformation and decoding processes, it is clear that C[c[i]] = D[d[i]], for i = 0, · · · , L−
1, and thus the intermediate symbol vector C is recovered.

3. Proposed Fast Raptor Decoding Scheme

In this section, we describe our fast algorithm that makes two improvements to reduce the computation time
in the phases 1 and 2 of the Raptor decoding algorithm used in 3GPP MBMS standard (3GPP, 2007). These
improvements are: (i) The NWFH scheme for efficient handling of decoding failure in phases 1 and 2, and (ii) The
FMDS scheme for efficient computing of the row degrees that are needed for each iteration in phase 1.

3.1 No-Wrapup Failure Handling Scheme

As described in Section 2.4, the 3GPP MBMS decoding process fails (i) in phase 1, when there is no non-zero
row to choose from before V disappears, and (ii) in phase 2, when the rank of Ulower ¡ u. When the decoding
process fails in the first two phases, it needs to receive enough new encoded symbols to restart decoding from the
beginning. However, phases 1 and 2 consume more than 90% decoding time of the entire Raptor decoding process.
In order to significantly reduce the decoding time, we propose a new NWFH scheme, which stores the indices of
the columns that are involved in the exchanges during the GE process. When the ith and i′th columns of A are
exchanged, we record i and i′ as an index pair. When the decoding fails in phases 1 or 2, we append n additional
received encoded symbols to D in (3), and append n new rows of generation matrix [GLT ]n×L (based on ESI values
of those received encoded symbols) to the bottom of the matrix A. Our algorithm exchanges the columns based on
the recorded indices for the submatrix [GLT ]n×L. After this, each row of the updated submatrix [GLT ]n×L is XORed
with each row of the identity submatrix I in A. Therefore, we can achieve the same results of original GE and
BP operations without restarting from the beginning. Finally, the standard GE and BP are performed to turn the
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updated A into an identity matrix from the location of decoding failure.

Figure 2(a) shows the basic ideas of GE and BP operations for a matrix. Figure 2(b) shows our proposed algorithm
to handle the decoding failure in phase 2. We denote the row exchange as ↕, column exchange as↔, and row XOR
as ↓ ↑, respectively. The rectangles with dash and solid borders represent the submatrix V and the chosen row with
the minimum degree, respectively. The rectangles with grey color denote the submatrix U. The text with bold font
highlights the new appending row of the generation matrix [GLT ]1×5 (based on ESI values of the received encoded
symbols).

(a) (b)

Figure 2. (a) Example of GE and BP operations on matrix; (b) Proposed NWFH algorithm to handle the failure in
phase 2

During the GE and BP operations, we store the indices of the columns that are involved in the exchanges in Figure
2(a). From the last matrix in Figure 2(a), we can see that the decoding process fails in phase 2 because the rank of
Ulower, denoted as rank(Ulower), where Ulower is the last row of submatrix U in this example, is equal to 0 which is
less than the number of columns in U (u = 1). If the decoding fails, we append a new row (based on the ESI value
of the encoded symbol) to the matrix. In Figure 2(b), the new added row is marked with bold font. We exchange
the columns of the new appended row based on the recorded column indices in Figure 2(a). Then the rows of
identity matrix I is XORed with this new row to eliminate the ones of the new row in columns 0 to i − 1. After
these operations, we obtain the final identity matrix.

In Raptor codes, the probability Pe(·) of decoding failure for a source block (i.e., the probability of at least one
source symbol in the source block not being recovered) can be estimated as a function of K and N (Stockhammer,
Shokrollahi, Watson, Luby, & Gasiba, 2008):

Pe(ε(K)) =
{ 1 if ε(K) < 0

0.85 × 0.567ε(K) if ε(K) ≥ 0
(5)

The average extra overhead Rε(K) needed for successful decoding after each failure is (Stockhammer, Shokrollahi,
Watson, Luby, & Gasiba, 2008):

Rε(K) =
1
K

∞∑
i=0

i · (Pe(i − 1) − Pe(i))

=
0.85

K

∞∑
i=0

i · (0.567i−1 − 0.567i)

=
0.85

(1 − 0.567)K
≈ 2

K
(6)

We can see that the average number of additional encoded symbols required for a source block with size K is
K × 2

K = 2, which is independent of K. Due to this reason, when N′ ≥ K and the decoding process fails, the
proposed algorithm continues decoding after receiving n = 2 additional encoded symbols.
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In other Raptor decoding schemes (3GPP, 2007; IETF, 2007; Mladenov, Nooshabadi, & Kim, 2011; Shi, Yang, &
Zhang, 2011), the decoding process cannot begin until at least N′ encoded symbols (N′ ≥ K) are received. Instead,
in our proposed NWFH algorithm, the decoding can begin when N′ < K. Meanwhile, our algorithm continues to
receive additional encoded symbols until N′ ≥ K. This reduces the decoding time.

3.2 Fast Minimum Row Degree Seeking Scheme

The computing load in phase 1 is high for a large matrix A because the number of 1s are counted in each row in
order to find out the row with the minimum degree r. After the minimum degree row is found, the row and column
exchanges are executed to make the upper-left submatrix an identity matrix.

Assuming that A is a M× L matrix and A is represented by V , L operations are needed to count the number of 1s in
each row in the first iteration. If we ignore the row and column permutations, (M−1)×L operations will be needed
to find out the row with the minimum degree of V in the first iteration. In the next iteration, the same process will
be repeated for the remaining (M − 1) rows and (L − 1) columns, which needs (M − 2) × (L − 1) operations. This
process goes on until V disappears. In Figures 1 and 2, the ones in the columns that are merged into submatrix U
are not considered when we calculate the row degree for subsequent iterations. Since the number of columns in U
is small compared to the column rank of matrix A because of the sparsity nature of matrix A, we can ignore their
contribution to the time complexity of phase 1. In the worse case, the time complexity of phase 1 is:

T = (M − 1) × L + (M − 2) × (L − 1) + · · · + (M − L) × 1

= O(L2M) (7)

In (7), the time complexity of GE and BP operations in phase 1 is a cubic of the dimension (L,M). Note that phase
1 occupies more than 90% of the total decoding time.

In order to further reduce the decoding time of the systematic Raptor codes, we propose a new FMDS scheme
to modify phase 1 so that we do not need to count 1s in each row for every iteration. In our proposed FMDS
algorithm, we calculate and record the degree of each row in matrix V , and then iteratively update the degree
of each row during the transformation process as discussed below. After the row with the minimum degree r in
submatrix V is found and is exchanged into the first row of V , all the columns of V are reordered so that the first
and the last r − 1 elements of the first row are ‘1’. Then, the other rows which have ones in their first column are
exclusive-ORed with the first row so that their first columns become ‘0’ and their degree is reduced by one. The
last (r− 1) columns are merged into U, and the degree of rows whose elements in these columns are 1 are updated,
instead of counting them as in (3GP, 2007). The row with the minimum degree is selected for the next iteration.

With our FMDS scheme, we only need to update the degree of a row in these two cases. It can easily maintain the
correct degree of a row and do not need to count the ones in each row when finding the row with the minimum
degree in each iteration.

In phase 1, the matrix A is converted to three submatrices: I, zero submatrix, and U as shown in Figure 1. In this
figure, V is an intermediate matrix. In the beginning of phase 1, V = A and I and U are Null matrices. For each
iteration, a row of V , with the minimum non-zero degree r, is chosen, where the degree of a row is defined as the
number of elements ‘1’ it has. Then, the chosen row is exchanged with the first row in V . All the columns of V
are reordered so that the first and the last r − 1 elements of the first row are ‘1’. Then, the other rows which have
ones in their first column are exclusive-ORed with the first row so that their first columns become ‘0’. The rank of
submatrix I is increased by 1 and the number of columns in U is increased by r − 1. This process is repeated until
the sum of columns of I and U is equal to L. Phase 1 fails when no non-zero row remains in V before V disappears,
that is, the sum of columns of I and U is less than L and elements in all rows of V are zero.

Figures 3(a) and 3(b) show scheme of (Mladenov, Nooshabadi, & Kim, 2011) and our FMDS scheme, respectively,
to seek the minimum degree row. The digits with grey background in ‘Degree’ column indicate that this row already
has the minimum degree and will not be considered in the next iteration. The symbol ‘?’ in ‘Degree’ column in
Figure 3(a) means that it needs to recount the number of ones in these rows to get the degree after the row/column
operations. The meaning of the other symbols are the same as in Section 3.1.

In Figure 3(a), after finding the minimum-degree row and performing the row/column permutation, the method in
(Mladenov, Nooshabadi, & Kim, 2011) needs to recount the number of ones in each row of submatrix V for the
next iteration. On the other hand, with our FMDS scheme in Figure 3(b), we only need to update the degree of a
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row in the following two cases: 1) The row is XORed with the minimum-degree row; 2) The column is merged
into the submatrix U (marked with the rectangles with grey color) and has one in this column. This is because the
one in this column will not be counted in the degree of the row for subsequent iterations.

3.3 Overall Algorithm

The pseudocode of the proposed scheme is given in Algorithm 1. Here, we only show our improved phases 1 and
2 in the decoding process of C. The symbols used in the pseudocode have been explained in Tables 1 and 3, and
Figure 1.

Table 3. Additional symbols defined in algorithm

Symbol Definition

↔ Operation that exchanges the values of
two associated operands

zeroRowNum The number of zero-rows in V

i The rank of identity matrix I

u The number of columns in matrix U

A[m] For m = 0, · · · ,M − 1, the mth row in A

A(l) For h = 0, · · · , L − 1, the lth column in
A

degree[s] For s = i, · · · ,M−1, records the degree
in V of the ith row in A

r Minimum non-zero degree in V of rows
in A

Rr The index of the selected row in A with
the minimum degree r in V

colExPos It records the indexes of the column ex-
changed during GE process

onesInLastCols[k] The number of ones in the last r−1 ele-
ments of A[k]. Here k = i+1, · · · ,M−1

addES I n × 1 vector that contains ESI values
of the n additional received encoded
symbols

4. Experimental Results

We compare the Raptor decoding computation time achieved by our proposed fast schemes with those in 3GPP
MBMS (3GPP, 2007) and (Mladenov, Nooshabadi, & Kim, 2011; Shi, Yang, & Zhang, 2011). The Raptor encoder
and decoder are implemented using Visual C + + on Intelr CoreT M2 Duo CPU T6670@2.20GHz, 3GB RAM.
The decoding of the intermediate symbols occurs in the same time as the transformation process. That is, each
time an operation in GE and BP occurs, the corresponding operation in the decoding process of the intermediate
symbol vector C also occurs.

4.1 Phase 1 Decoding Time

As explained in the previous section, our algorithm differs from previous decoding algorithms in phases 1 and 2
of the transformation process, including the time consumed by the corresponding decoding operations of C. The
computation times of phase 1 and the overall Raptor decoding are shown in Figure . We observe that phase 1 takes
more than 90% of the total decoding time. Therefore, it is critical to handle the decoding failure in phases 1 or 2
in order to reduce the computation time of Raptor decoding.
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(c)

(d)

Figure 3. (a) The method in (Mladenov & Nooshabadi & Kim, 2011) to seek the minimum-degree row; (b) Our
proposed FMDS scheme
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Figure 4. The total decoding time (i.e., decoding time of the transformation process of A and decoding process of
C) vs. the decoding time of phase 1 only for different number of source symbols (K). The symbol size ℓ = 128

bytes
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4.2 Performance of NWFH Scheme

Figure 5 shows the decoding time using the schemes of (3GPP, 2007) and (Shi, Yang, & Zhang, 2011), and our
proposed NWFH scheme when the Raptor decoding failure occurs in phase 1 of the transformation process. Figure
5(a) shows the performance when the size of source symbols (ℓ) is fixed at 128 bytes and the number of source
symbols (K) varies. Figure 5(b) shows the performance when K is fixed at 1024 and ℓ varies. The NWFH algorithm
achieves much lower decoding time than the schemes in (3GPP, 2007) and (Shi, Yang, & Zhang, 2011), because
they both restart the decoding process, after receiving additional symbols, when decoding fails in phase 1, whereas
our scheme continues decoding after receiving additional symbols without having to restart the phase 1.

Figure 5. The decoding time when phase 1 fails with (a) different number of source symbols K for a fixed symbol
size ℓ = 128 bytes; and (b) different source symbol sizes ℓ for a fixed number of source symbols K = 1024

Figure 6 shows the decoding time of the three decoding schemes when the Raptor decoding fails in phase 2 of
the transformation process. When decoding fails in phase 2, both phases 1 and 2 are repeated in (3GPP, 2007).
Therefore, the decoding time of NWFH scheme is much lower than that of the 3GPP MBMS scheme in (3GPP,
2007) in both Figures 6(a) and 6(b). Since the scheme in (Shi, Yang, & Zhang, 2011) also efficiently handles the
decoding failure of phase 2, its performance is close to that of our NWFH scheme when values of ℓ are K are small.
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However, the scheme in (Shi, Yang, & Zhang, 2011) waits for the phases 3 and 4 to be completed before it can
take action on phase 2 failure. When values of ℓ or K increases, the time to finish phases 3 and 4 also increases.
As a result, the decoding time of the scheme in (Shi, Yang, & Zhang, 2011) increases more than that of our NWFH
schemes for larger values of ℓ and K in Figures 6(a) and 6(b).

Figure 6. The decoding time when phase 2 fails with (a) different number of source symbols K for a fixed symbol
size ℓ = 128 bytes; and (b) different source symbol sizes ℓ for a fixed number of source symbols K = 1024

4.3 Performance of FMDS Scheme

In this section, our goal is to study the time saved by our FMDS scheme for searching the row with minimum
degree, when all the decoding phases succeed. Note that the decoding schemes in (3GPP, 2007) and (Shi, Yang,
& Zhang, 2011) do not discuss how to find a row with minimum degree. We compare our FMDS scheme with
the decoding schemes in (Mladenov, Nooshabadi, & Kim, 2011) as it gives the detail of how to find a row with
minimum degree for the Raptor decoder. Figure 7(a) shows the decoding time of (Mladenov, Nooshabadi, & Kim,
2011) and our proposed FMDS scheme when ℓ = 128 bytes and K varies. In Figure 7(b), we fix K at 1024 and
vary ℓ. Our proposed decoding scheme is much faster than (Mladenov, Nooshabadi, & Kim, 2011) because it does
not need to count ones in each row when searching the row with the minimum degree in submatrix V . Instead, we
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iteratively update the degree of each row during phase 1, based on the information from ESI, GLDPC , GHal f and
GLT . Our FMDS scheme thus saves much time of phase 1.

Figure 7. The decoding time of (Mladenov, Nooshabadi, & Kim, 2011) and our proposed scheme (a) different
number of source symbols K for a fixed symbol size ℓ = 128 bytes; and (b) different source symbol sizes ℓ for a

fixed number of source symbols K = 1024

5. Conclusions

In this paper, we have proposed two schemes to improve the decoding efficiency of Raptor decoding. First, the
NWFH scheme can resume the decoding process from where the decoding failure occurs after receiving a pre-
defined number of additional encoded symbols. This saves the decoding time by avoiding restarting the decoding
process from scratch when decoding failure occurs. Second, the proposed FMDS scheme effectively seeks for
the row with the minimum degree in matrix A without counting the ones of each row in each iteration. In our
experiments, we compared the decoding time complexity of the proposed algorithm with that of other algorithms.
our results showed that the proposed algorithm significantly improves the decoding time. We also extended the
proposed scheme of failure handling in wireless channels with different erasure rates, to demonstrate the robustness
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of improvement in decoding time. In the future work, we will adopt the proposed Raptor decoding schemes in video
transmissions in Cognitive Radio Networks.
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