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Abstract 
Shannon entropy is a basic characteristic of communications from energetic point of view. Entropy has been 
expressed here as a function of signal to noise ratio, and lower bound for entropy has been investigated. We prove 
that finite nonzero bound does not exist, therefore in case of M-QAM modulation, there is no theoretical limit for 
reduction of the effect of noise. In our investigations, averaging is considered, exploiting the zero expected value 
of the Gaussian noise. 
Index Terms—Shannon entropy, probability of successful communications, bit error rate, signal to noise ratio, 
bound for noise reduction. 
1. Introduction 
In this year, we celebrate the 73rd anniversary of the Shannon theory (Shannon, 1948). An essential tool of the 
theory is the Shannon entropy (Shannon, 1949): 𝐻 = − ∑ 𝑝  𝑙𝑑 𝑝                                     (1) 
where 𝑝  is the probability of the successful communication of the ith message, ld is the logarithm of base 2. For 
binary messages, 𝐻(𝑝) = −𝑝 𝑙𝑑 𝑝 − (1 − 𝑝)𝑙𝑑(1 − 𝑝)                           (2) 
From thermodynamics, entropy is a measure of disorder. At complete order, entropy is zero, at complete disorder, 
entropy has a maximum. Suppose that this idea can be extended for the theory of communications as well. That 
means, when we try to decrease effect of noise, then we try to decrease entropy. At minimum effect of noise, 
entropy has a lower bound. So, our goal is to find the lower bound of entropy. 
In Figure 1 we can see (2). 

 
Figure 1. Shannon entropy as a function of probability of successful communication. Blue: H(p) in Equation (2). 

Red: approximating quadratic curve 
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The curve of the entropy is almost a quadratic function. We can see that complete order is at p=0 and p=1, 
complete disorder is at p=0.5. Really, success of communications is surely detected at p=0 and p=1, and the 
uncertainty is the highest at p=0.5. Figure 1 has been provided using the following Matlab program: 
p=0:0.001:1; 
plot(p,-p.*log2(p)-(1-p).*log2(1-p)) 
hold on 
plot(p,1-4.*(p-.5).^2,'r') 
In Section II, 𝐻 has been expressed as a function of signal to noise ratio. In Section III, it has been proved that 𝐻 has no extremum, as a function of the detection threshold. In Section IV, it is proved based on the previous 
Section, that there is no theoretical limit for reduction of the effect of noise. Throughout of our investigations, 
averaging is considered. 
Entropy 
i) Thermodynamical entropy (Lieb & Yngvason, 1999) 
The concept of entropy was introduced by Clausius (Clausius, 1879). Goal was to distinguish natural processes 
that are not possible or irreversible, despite the law of energy conservation is not hurt. Second main law of 
thermodynamics says that in an isolated system, total entropy cannot decrease. Thus, entropy is a measure of 
disorder. 
Clausius approach is macroscopic, complemented by Boltzmann’s microscopic approach (Laranjeiras, Lucena, & 
Chiappin, 2020). The formula for Boltzmann entropy says that entropy is linearly proportional to the logarithm 
of number of microscopic states in a system, i. e. 𝑆 = 𝑘 ln 𝑊 where k is the Boltzmann constant and 𝑊 is the 
number of states. This approach is indispensable in determining energy distribution of different elementary 
particles. One of them, the Fermi-Dirac statistics (Dirac, 1926), is a part of the basis of semiconductor physics. 
ii) Gibbs entropy (Jaynes, 1965)  
The Gibbs entropy formula differs from that of Boltzmann, 𝐻 = 𝑘 ∑ 𝑝 ln 𝑝  where k is the Boltzmann constant 
and 𝑝  are probabilities of system fluctuations. It is shown that there are neglections in the Boltzmann formula 
that cannot be hold, and the correct formula is Gibbs’s one. 
iii) von Neumann entropy (Mackey, 2013) 
The von Neumann entropy is an extension of Gibbs entropy for the case of quantum mechanics: 𝑆 = 𝑡𝑟 (𝜌 ln 𝜌), 
where 𝜌 is the density matrix (Wikipedia: Density matrix), ln is the natural logarithm (of base e), and 𝑡𝑟 () is 
trace (sum of diagonal elements). 
iv) Shannon entropy (Shannon & Weaver, 1949) 
Shannon entropy is essentially the extension of Gibbs entropy from particles to messages in information transfer: 𝐻 = − ∑ 𝑝 ld 𝑝  where ld is the logarithm of base 2 and 𝑝  is the probability of the successful transfer of the 
ith message. 
It is an interesting question if entropy is in connection with the amount of transferred information. If 
self-information (Wikipedia: Information content) is defined as 𝐼 = − ∑ ld 𝑝  then entropy is the expected 
self-information 𝐻 = ∑ 𝑝 𝐼 . 

Now, if the probabilities 𝑝  are identical, then we return to the Boltzmann entropy formula, namely, if 𝑝 = , 

then 𝐻 = ∑ −𝑙𝑑 = 𝑙𝑑 𝑊. So, the Boltzmann entropy of a series of messages equals to the expected 
self-information. 
An expression for Shannon entropy 
From (2) we have the following ideA.1. i) The probability of a successful message 𝑝 is in close connection with 
the bit error rate (BER). ii) BER can be expressed as a function of the signal to noise ratio (SNR) for any 
specified types of digital modulation (Proakis, 2001). iii) Then entropy can be expressed as a function of the 
detection threshold L, see please a few lines below. iv) Then extremum of entropy can be investigated. 
This idea has been motivated by the problem if successful communication of bits is really limited by the 
condition when power density of the signal is identical to that of the noise. We suspect that the answer is 
negative, therefore we introduce the detection threshold 0 ≤ 𝐿 ≤ 1 and say, that the successful communication 
is limited by: 
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𝑃𝐷𝑆 = 𝐿 ∗ 𝑃𝐷𝑁         (3) 
where 𝑃𝐷𝑆 and 𝑃𝐷𝑁 are the signal and noise power densities, respectively. That means if 𝑃𝐷𝑆 > 𝐿. 𝑃𝐷𝑁 
then the message is detected successfully, otherwise not. Our plan is to express 𝐻(𝐿) and try to determine the 
value of 𝐿 corresponding to the minimum of 𝐻 at a given 𝑆𝑁𝑅. 

i) Denote g and b the number of good and bad detection of bits, respectively. Then 𝑝 =           (4) 𝐵𝐸𝑅 =          (5) 

By combining (4) and (5), 𝑝 = 1 − 𝐵𝐸𝑅         (6) 
From (2) and (6), 𝐻(𝐵𝐸𝑅) = −𝐵𝐸𝑅 𝑙𝑑 𝐵𝐸𝑅 − (1 − 𝐵𝐸𝑅)𝑙𝑑(1 − 𝐵𝐸𝑅)      (7) 

ii) Expression for BER as a function of SNR is found in (Proakis, 2001): 𝐵𝐸𝑅 = 𝑒𝑟𝑓𝑐         (8) 

where 𝐸  is bit energy, 𝑁  is noise power density and 4QAM modulation was assumed. Bit energy is the same 
as signal power density (Appendix III), so (8) can be written as follows: 𝐵𝐸𝑅 = 𝑒𝑟𝑓𝑐         (9) 

where PDS and PDN are the signal and noise power densities, respectively. In this paper, we define the signal to 
noise ratio SNR as 𝑆𝑁𝑅 =          (10) 

This definition, instead of 𝑆𝑁𝑅 = , where S and N are the signal and noise power, respectively, is based on our 
modification of the Shannon formula (Ladvánszky, 2020). 
Assume that averaging is applied for our signal that decreases PDN and leaves PDS intact: 𝑆𝑁𝑅 = . = 𝑆𝑁𝑅       (11) 

Thus from (9), 𝐵𝐸𝑅 = 𝑒𝑟𝑓𝑐√𝑆𝑁𝑅  is rewritten as 𝐵𝐸𝑅 = 𝑒𝑟𝑓𝑐 . 𝑆𝑁𝑅       (12) 

iii) Applying (7) and (12), 𝐻(𝐿) has been obtained, for a given 𝑆𝑁𝑅. 
iv) Now it is to investigate if 𝐻(𝐿) has a finite nonzero minimum. 𝐻 has no extremum : 

In Figure 2, we plotted the logarithmic derivative of 𝐻(𝐿). 
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Figure 2. Horizontal axis: L. Vertical axis: 𝑙𝑜𝑔10 ( ), at some 𝑆𝑁𝑅 values: .1 (magenta), .3 (blue), 1 (green), 

3 (red). > 0 thus 𝐻(𝐿) has no minimum, it is strictly monotonically increasing 

 
Figure 2 has been provided using the following Matlab program: 
SNR=.1; 
L=0.3:0.01:1; 
dL=0.001; 
BER=(.5*erfc(sqrt(1./L.*SNR))); 
BER1=(.5*erfc(sqrt(1./(L+dL).*SNR))); 
H=-BER.*log2(BER)-(1-BER).*log2(1-BER); 
H1=-BER1.*log2(BER1)-(1-BER1).*log2(1-BER1); 
dH=H1-H; 
plot(L,(log10(dH/dL)),'m'); 
 
This program has been repeated four times with different values of 𝑆𝑁𝑅. 
Meaning of Figure 2 is the following. 
L can be arbitrarily small. That is, effect of noise can be decreased arbitrarily by averaging. That is done by 
repeating the message in noise and taking the arithmetic mean of the detected signals. This can be done without 
any bounds. 
Analytical proofs have been found in Appendix I and II. 
5. Conclusions 
We expected that by finding the extremum of 𝐻(𝐿), a specific 𝐿 value can be found that is the bound of the 
averaging procedure. Surprisingly, we found that 𝐿 can be arbitrarily small. 
The result is significant. When trying to decrease the effect of noise by averaging, repetition can be done 
arbitrary times, without limit. This is reasonable, because increasing the number of averaging, effect of noise is 
further reduced. Thus, Equation (3) says that there is no theoretical limit for reduction of the effect of noise. 
This result is in harmony with the similar result from the theory of coding. BER can be arbitrarily reduced by 
applying sufficient redundance. 
Note that we speak about lack of theoretical limit. Of course, practical limit is more rigorous. Otherwise signal to 
noise ratio could be made arbitrarily high, and there were no upper bound for the speed of information transfer 
over a noisy channel of finite bandwidth. 
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Although our calculations are for 4QAM, the same can be done for any kind of digital modulation. That is the 
explanation of the title. 
Finally, we should emphasize that the term noise reduction does not mean here physical reduction of noise, but 
only that of its effect on communications. 
One of the reviewers required more comparison with existing results. The author is not aware of any such study 
(Shannon, 1948; 1949; Proakis, 2001; Littlejohn & Foss, 2009). The nearest idea is, as we have already 
mentioned, proof of existence of an error correcting code if the BER is lower than the theoretical upper limit (0.5) 
(Shannon, 1948; 1949). Here we pointed out that theoretically we can achieve the same without coding. Thus, 
averaging and coding may result the same, as both exploit redundancy. 
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Appendixes 
 
Appendix I. Analytical proof of the strict monotonicity of 𝐻(𝐿) for 4QAM 

Strict positivity of ( ) should be proved. We achieve it in the following way: 

( ) = ( )         (A.1.1) 

Let us start with (2) above: 𝐻(𝑝) = −𝑝 𝑙𝑑 𝑝 − (1 − 𝑝)𝑙𝑑(1 − 𝑝)       (A.1.2) 

(A.1.2) yields: ( ) =  (𝑝 𝑙𝑛 𝑝 + (1 − 𝑝)𝑙𝑛(1 − 𝑝)) = ln 𝑝 + 𝑝 + − ln(1 − 𝑝) + (1 − 𝑝) = 𝑙𝑛 =
𝑙𝑑          (A.1.3) 

Continue with (6) above: 𝑝 = 1 − 𝐵𝐸𝑅        (A.1.4)) = −1        (A.1.5)) 

Continue with (9) above: 𝐵𝐸𝑅 ≈ 𝑒𝑟𝑓𝑐√𝑆𝑁𝑅        (A.1.6) 

= √  𝑒 =  𝑒     (A.1.7) 

Continue with (11) above: 𝑆𝑁𝑅 = . = 𝑆𝑁𝑅       (A.1.8) 

= 𝑆𝑁𝑅       (A.1.9) 

Combining the equations above: ( ) = 𝑙𝑑  (−1) √  𝑒  𝑆𝑁𝑅    (A.1.10) 

𝑙𝑑  (−1) = 𝑙𝑑 − 1       (A.1.11) 

As in (A.1.6), 𝐵𝐸𝑅 <         (A.1.12) 

thus in (A.1.11), 𝑙𝑑 − 1 > 0                             (A.1.13) 
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and in (A.1.10), 

( ) > 0                                (A.1.14) 

for any 𝑆𝑁𝑅 values. Therefore 𝐻(𝐿) has no extremum, it is strictly monotonically increasing. That is, we 
wanted to prove. 
 
Appendix II. Extension for QAM of arbitrary order 
(A.1.6) is an approximation. That should be replaced with the exact formula that is valid for QAM of arbitrary 

order (Meghdadi, 2008; Wireless Pi, 2019). 
Let us start with the exact formula for M-ary QAM symbol error rate (Meghdadi, 2005; Equation 15): 

𝑆𝐸𝑅 = 1 − 1 − (√ )√  𝑄                               (A.2.1) 

where M is the order of QAM, 𝛾 =                                        (A.2.2) 

where 𝐸  and 𝑁  are the average symbol energy and noise power density, respectively, 𝑄(𝑥) = 𝑒𝑟𝑓𝑐 √                                  (A.2.3) 

𝛾 =                                       (A.2.4) 

where 𝐸  is the average bit energy, and 𝐸 = 𝐸  𝑙𝑑 𝑀                                   (A.2.5) 𝑆𝐸𝑅 = 𝐵𝐸𝑅 𝑙𝑑 𝑀                                 (A.2.6) 

Combination of (A.2.1-6) yields: 

𝐵𝐸𝑅 =  1 − 1 − (√ )√  𝑒𝑟𝑓𝑐   ( )                      (A.2.7) 

Based on (A1.2), (A1.4), (A2.7), (A1.8) the H(L) function is shown in Fig. 3 for 4, 16 and 64 QAM. 
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Figure 3. Shannon entropy as a function of the detection threshold for 4QAM (magenta), 16QAM (blue) and 

64QAM (green) 
 
Figure 3 has been plotted using the Matlab program below, repeated with different values of M: 
 
M=4; 
SNRprime_dB=0; 
L=0.01:0.01:1 
SNR=10.^(SNRprime_dB./20)./L; 
BER=1./log2(M).*(1-(1-(sqrt(M)-1)/sqrt(M)*erfc(sqrt((3.*SNR.*log2(M))./(M-1
)./2))).^2); 
H=-BER.*log2(BER)-(1-BER).*log2(1-BER); 
plot(L,log10(H),'m') 
 
We use (MathWorks. n.d.):  𝑒𝑟𝑓𝑐(𝑧) = −  √         (A.2.8) 

Then we replace (A.1.7) with the following: 

=  2 1 − √√  𝑒𝑟𝑓𝑐   ( ) − √√ − √ 𝑒   ( )     ( )    ( ) = − 1 −
√√  𝑒𝑟𝑓𝑐   ( ) √√ √ 𝑒   ( )    ( )                (A.2.9) 

As 𝑀 2, < 0. Substituting this into (A.1.1): ( ) = ( )   > 0                     (A.2.10) 

because all terms are negative. Thus 𝐻(𝐿) is strictly monotonically increasing for QAM of order M. 
 
Appendix III. Bit energy and signal power density 
One of the reviewers asked a reference for the statement that bit energy is the same as signal power density. As 
we are not aware of a reference for this statement, in this Appendix we explain it. 
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Sketch of the calculation is that we determine bit energy 𝐸  and average signal power density 𝑃𝑆𝐷 of a 
periodic, rectangular signal of amplitude 𝑉  and bitrate R that means repetition frequency of 𝑅/2. Then we find 𝐸 = 𝛼 𝑃𝐷𝑆        (A.3.1) 
where 𝛼 is a positive, real number. In the calculation, we assume an ideal rectangular lowpass filter following 
the mixer, with corner frequency R. 
The exact value of 𝛼 does not influence the conclusion of this paper, thus, without loss of generality, 𝛼 = 1 is 
assumed.  
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