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Abstract 
In this paper, variable stiffness damped absorbers are used to isolate the substructures of Euler-Bernoulli beam, 
modelled as lumped masses, from vibrations. The novel algorithm is developed that can be used to determine the 
required absorber masses and resonance frequencies to impose nodes at selected locations on beam with the 
constraint of vibration amplitude of absorber mass. Numerical simulations are performed to show the effectiveness 
of the proposed algorithm. Experimental test is conducted on a cantilever beam with two absorbers to verify the 
numerical results.  
Keywords: vibration absorber, node, cantilever beam, harmonic force, vibration isolation 
1. Introduction 
The tuned vibration absorber (TVA) was invented by (Frahm, 1911), since then, has been is an important 
engineering tool for vibration suppression. The first classical paper on dynamic vibration absorber was by 
(Ormondroyd & Den, 1928). Their vibration absorber consisted of a tuned spring-mass used to suppress the 
response of a harmonic oscillator. An excellent survey of passive, semi-active and active dynamic vibration 
absorbers was prepared by (Sun et al., 1995). Spring-mass systems which are used as vibration absorbers to 
minimize excesses vibrations in continuous structure have received considerable interest in recent years. (Young, 
1928) was the first to consider the application of absorber to control the vibrations of a continuous structure i.e. 
cantilever beam, at the absorber attachment point with the absorber tuned to the first natural frequency of the beam. 
(Manikanahally & Crocker, 1993) employed vibration absorbers to suppress any number of significant modes. The 
method was successfully applied to a space structure modeled as a mass-loaded free–free beam subjected to 
localized harmonic excitation. (Esmailzadeh & Jalili, 1998) presented a procedure in designing DVA for a 
structurally damped beam system subjected to distributed force excitation. The absorber is modeled as 
spring-mass-damper system and the optimum tuning and damping ratios are determine to minimize the beam 
dynamic response at the resonance frequency at which they operate. Research on suppressing vibration in a region 
or the particular span of an elastic structure by using the spring mass vibration absorber has been reported recently. 
(Cha, 2004, 2005) employed spring-mass vibration absorber to reduce vibrations at desired locations by imposing 
node technique (Hao et al., 2011). Suppressed the hand-arm vibration in electric grass

 
trimmer by installing tunable 

vibration absorber at optimum location. The focus of (Cha & Rinker, 2012) was on enforcing nodes at desired 
location of damped Euler-Bernoulli beam during forced harmonic excitations using damped vibration absorbers. An 
efficient method is developed which determines the restoring force exerted by the damped absorbers using Gaussian 
elimination and then the forces are used to determine the parameters of oscillators. (Hao & Ripin, 2013) applied 
imposing node technique to achieve very low vibration at handle location using two tunable vibration absorbers. The 
grass trimmer system is simplified as an arbitrary, supported beam constrained by 4 lumped masses. The Matlab 
routine global search is utilized to obtain the tuning frequencies of the absorbers. (Patil, & Awasare, 2016) 
developed an iterative procedure to find the required resonance frequencies of absorbers to impose node at selected 
locations on beam. 
In the method proposed by Cha to induce multiple nodes, a set of nonlinear algebraic equations need to be solved 
simultaneously. Numerically, the solution of these equations is very computationally intensive because the 
convergence is often very slow. The limitations of the procedure developed by Patil & Awasare are that, the 
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maximum allowable absorber amplitudes were not considered while finding the resonance frequencies of the 
absorbers. The purpose of this paper is 1) To develop mathematical model of the beam carrying multiple damped 
absorbers and to formulate the equation for imposing nodes at desired locations on the beam 2) To develop an 
algorithm to find the required absorber parameters to impose nodes at selected locations on the beam with constraint 
of the tolerable vibration amplitudes of the absorber mass.3) To perform numerical simulation on beam to show the 
utility of the proposed algorithm 4) To carry the experimental test to validate the numerical results.  
2. Theory  
Figure 1 shows an arbitrarily supported, Euler-Bernoulli beam with n tunable vibration absorbers attached at ix . 
The absorber modeled as single degree of freedom spring-mass-damper system having mass im , stiffness ik  and 
damping coefficient ic  of the i th absorber. The lumped masses are supported at locations mix on the beam. The 
external harmonic force ( ) ej tf t Fe ω=  is applied to the structure at fx , where F  represents the forcing amplitude,

eω  denotes the excitation frequency, and 1j = −  

 
Figure 1. Beam with variable stiffness damped multiple absorbers subjected to localized harmonic excitations 

 
Using the assumed-modes method the deflection of the beam at any point x  along the structure is given by Leonard 
Meirovitch (2007). 
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where N  is the number of modes used in the assumed-modes expansion, ( )i xφ  are the eigenfunctions of the 
undamped beam and ( )i tη  are corresponding generalized co-ordinates. Applying Lagrange’s equations and 
assuming simple harmonic motion with same response frequency as the excitation frequency, the following 
equations of motion are obtained 
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where 1 2[ ]TNη η η η=  , 1 2[ ]Tnz z z z=  , and the matrices [m] [c] and [k] of size n n×  are diagonal, 
whose i th elements are given by im , ic and ik respectively. The N N×  [M] [C] and [K] matrices of equation (2) 
are  
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where [ ]dM , [ ]dC and [ ]dK are diagonal matrices whose i th elements are ,iM ,iC and iK are the generalized 
masses, damping and stifnesses of beam. Vector of the eigenfunctions of the beam and the matrices [ ]cR and [ ]kR
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of size N n×  are given by  

 1 2( ) [ ( ) ( ) ( )] ,T
i i i N ix x x xφ φ φ φ=    1 2( ) [ ( ) ( ) ( )] ,T

f f f N fx x x xφ φ φ φ= 
  

 
1 2( ) [ ( ) ( ) ( )]Tmi mi mi N mix x x xφ φ φ φ=    (4)

 
 1 1[ ] [ ( ) ( ) ( )]c i i n nR c x c x c xφ φ φ= − − −   1 1[ ] [ ( ) ( ) ( )]k i i n nR k x k x k xφ φ φ= − − − 

  
(5) 

Using second equation of equation (2), the iz  are found to be 
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In equation (6) resonance frequency iω  and damping coefficient ic of i th absorber are given by 

  iω i ik m=      ic = 2 i iζ ω ,
   (7) 

where iζ is the damping ratio of the i th absorber 
Equation (6) is substituted into the first equation of equation (2) and then solving for η to obtain 
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In equation (8)  
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Substituting equation (8) in to equation (1), following equation is formulated, the solution of which gives the 
absorber parameters required to impose node at desired locations nrx along the beam  
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1,i n=    (10) 

Once the beam with its boundary conditions are specified, absorbers attachment locations ,ix excitation frequency 
eω  and the excitation location fx are known, equation (10) can be used to find the absorber parameters, mass of 

the absorber im  and resonance frequencies iω , for given absorber damping ratio iζ  at which displacements of 
beam ( )nrW x  becomes zero to impose nodes at nrx .  
An algorithm is developed, which is based on finding the resonance frequency of absorber ω  at which ( )nW x  is 
less than ( )nPW x and ( )nNW x i.e the absolute value of the displacement of the beam at node location is less than 
the absolute value of the displacement at previous and next to node location as shown in Figure 2. The condition 

( ) ( )n nPW x W x<  and ( ) ( ) ,n nNW x W x< gives the absorber frequency ω  for given mass m  necessary to 
impose node.  
The procedure to find the absorber masses 1m  and 2m  and frequencies of the absorbers 1ω  and 2ω to impose 
two nodes is as follows 
Algorithm to find the masses and corresponding resonance frequencies of the absorbers to impose two nodes  
(1) Assume the lower value for the absorber masses 1m and 2m .  
(2) Set initial frequencies of the absorbers 1 eω ω<  and 2 eω ω< .  
(3) Determine 1σ  and 2σ  from Equation (9). 
(4) Compute 1( )nW x   1( )n PW x

 
and 1( )n NW x

 
using Equation (10). 

(5) If 1 1( ) ( )n n PW x W x<  and 1 1( ) ( ) ,n n NW x W x< is the absorber mass and 1ω  
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(6) is the absorber frequency required to impose node. Else increase the frequency of absorber 1ω  in steps, 
compute 1 1 1( ) , ( ) , ( )n n P n NW x W x W x , till above condition is achieved.  

(7) Increase the mass 1m of first absorber and repeat steps (3) to (5) till, 1 1maxz z≤ . Record the corresponding 
resonance frequency 1ω  .  

(8) Replace frequency and mass of first absorber in 1σ with new frequency 1ω  and mass 1m  obtain from step 
number (6). 

(9) Compute 2( )nW x   2( )n PW x
 
and 2( )n NW x

  
using Equation (10). 

(10) If 2 2( ) ( )n n PW x W x<  and 2 2( ) ( ) ,n n NW x W x< 2m is the absorber mass and 2ω is the absorber frequency 
required to impose node.  

(11) Else increase the frequency of absorber 2ω  in steps, compute 2 2 2( ) , ( ) , ( )n n P n NW x W x W x , till above condition 
is achieved. 

(12) Increase the mass 2m  of second absorber and repeat steps (8) to (10) till, 2 2 maxz z≤ . Record the 
corresponding resonance frequency 2ω .  

(13) Replace frequency and mass of second absorber in 2σ  with new frequency 2ω  and mass 2m  obtain from step 
number (11). 

(14) Repeat procedure from step number (3) to (12) with revised 2σ . 

 
Figure 2. Illustration of condition ( ) ( )n nPW x W x<  and ( ) ( ) ,n nNW x W x< used to find frequency of absorber 

 
3. Numerical Results 
Because the assumed-mode method was used to formulate the equations of motions, the proposed procedure can be 
easily implemented to impose node along any arbitrary supported beam subjected to harmonic excitations. For 
cantilever beam, its normalized (with respect to mass per unit length, ρ , of the beam) eigenfunctions ( )i xφ , 
generalised masses iM  and generalised stiffnesses iK  are given by  
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  1iM =    and     4 4( ) ( )i iK L EI Lβ ρ=   (12) 

where i Lβ satisfies the following transcendental equation  

 cos cosh 1i iL Lβ β = −    (13) 
where E  is Young’s modulus, I  is the moment of inertia of the cross-section of the beam. 
In the following example the frequencies and and vibration amplitudes are non-dimensionalised by dividing by 

4( )EI Lρ  and 3( / )F EI L respectively. Number of modes, 15N = is used in the assumed-modes expansion. The value 
of the absorber frequency iω and mass im are incremented by 40.001 ( )EI Lρ  and 0.0001 Lρ , in each iteration 
respectively. The absorber has a low damping to obtain the greatest vibration attenuation at the intended frequency. 
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Now consider the example of a uniform cantilever beam. It is desired that two nodes to be imposed, at 1 0.4nx L=
and 2 0.6nx L= , for 464 ( )e EI Lω ρ=  at 1fx L= , for vibration isolation of lumped masses 1 0.02ml Lρ= , 

2 0.04ml Lρ= and 3 0.02ml Lρ= supported at 1 0.4mx L= , 2 0.5mx L= and 3 0.6mx L=  respectively. The two 
absorbers are attached at location 1 0.3x L= and 2 0.65x L= on the beam. The absorber parameters, resonance 
frequencies and masses for given damping ratio, required to impose nodes obtained by using the algorithm 
developed are listed in Table-1. 
 
Table 1. Summary of absorber parameters for the example of vibration isolation of lumped masses supported on 
uniform cantilever beam 

Absorber Damping ratio
iξ  

Attachment Locations
ix  m 

Mass 
im  kg  

Required Frequency
iω  rad/sec 

Tolerable Mass amplitude
maxiz  m 

First 0.001 0.4L 0.0519 Lρ 468.52 ( )EI Lρ  0.0015 3( / )F EI L  

Second  0.001 0.6L 0.0851 Lρ 461.41 ( )EI Lρ  0.0035 3( / )F EI L  

 
Figure 3, shows the steady state deformed shapes of cantilever beam with node at 0.4L and 0.6 .L Note the region on 
beam up to 0.6L experiences less vibration comparing to the beam without absorbers. 
 

 
Figure 3. The absolute steady-state response of beam with and without absorbers to impose nodes at 0.4L and 0.6L , 

for the absorber parameters listed in Table 1 
 
4. Experimental Test  
For imposing two nodes the dual cantilevered mass absorbers were designed and constructed as shown in Figure 5. 
The resonance frequency of device is adjusted by moving the masses towards or away from the base support, which 
alters the effective stiffness in the system and alters its resonance frequency. Note that the structural damping of the 
absorbers used is considered as equivalent viscous damping. Next in order to verify the numerical result, 
experimental test was conducted for the case of cantilever beam with two absorbers as shown in Figure 5. The two 
absorbers are attached at 0.3L and 0.65L  and the harmonic input force is applied at the tip of the beam with 
frequency 152 Hz i.e 4

64 ( )e EI Lω ρ= . The force amplitude is kept constant at 5 N through the experiment and used to 
non-dimensionalize the displacements of the beam by dividing by 3( / )F EI L . The system parameters and material 
properties used in experimental test are listed in Table 2. The toltal weights of absorber end masses attached at 
0.3L and 0.65L are 0.25 Kg and 0.42 Kg respectively. The damping ratios of the both absorber are 1 2 0.001ξ ξ= = . 
The absorbers were tuned by moving the end masses in or out such that the displacement at 0.4L and 0.6L was 
minimized. After tuning of the absorbers the vibration amplitudes were measured at twenty points on the beam’s 
surface by the accelerometer and recorded by vibration analyzer to plot experimental steady state response as shown 
in Figure 6. It is observed that the vibrations at the node locations of the beam are reduced to a minimum level. 
Comparing Figure 3, with Figure 6, it is observed that there is good agreement between the numerical results and 
experimental results.  



www.ccsenet.org/mer Mechanical Engineering Research Vol. 6, No. 1; 2016 

93 

 
Figure 4. Illustration of experimental set up 

 

 
Figure 5. Experimental test on cantilever beam supporting lumped masses with two absorbers tuned to impose nodes 
 
Table 2. The system parameters and material properties used in the experimental test 

Length of the beam L  1 m 
Thickness of the beam t  0.01 m  
Width of the beam b  0.065 m 
Density of the beam  7830 Kg/m3 
Young’s modulus of the beam E  2.1 x 1011 N/m2 
Mass per unit length of beam ρ  5 Kg/m  
Parameter 3/EI L  used to nondimensionlised stiffness of beam  1137.5 N/m 
Parameter 4( ),EI Lρ used to nondimensionlised frequencies 14.95 N/m/Kg 
Parameter 3/F EI L  used to nondimensionlised vibration 
amplitudes of beam and absorber masses 0.004 m 

Weight of lumped masses                           1ml  0.1 Kg = 0.02 Lρ  

                                                2ml  0.2Kg = 0.04 Lρ  

                                                3ml  0.1 Kg = 0.02 Lρ  
Total weight of end masses of first absorber             1m   0.25  Kg = 0.052 Lρ  
Total weight of end masses of  second absorber         2m   0.42  Kg = 0.085 Lρ  
Damping ratio of absorbers                        1 2ξ ξ=  0.001 
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The frequency response plots for first and second tuned absorbers are depicted in Figure 7 (a) and Figure 7 (b) 

respectively. The frequency response plot shows the resonance frequency, of first absorber 4
1 164 68.9 ( )Hz EI Lω ρ= ≈   

and of second absorber 4
2 145 61 ( )Hz EI Lω ρ= ≈ , are in close match with numerical solution i.e 4

1 68.52 ( )EI Lω ρ= and
4

2 61.42 ( )EI Lω ρ= . The frequency response plot for beam is as shown in Figure 8(a) and peaks give the first three 
natural frequencies of the cantilever beam 8 Hz, 53 Hz and 151 Hz respectively. The frequency response plot for 
beam with absorbers is shown in Figure 8(b), and observed that the response drops to a minimum at excitation 
frequency 4152 64 ( )Hz EI Lρ≈ and peaks at 4108 47 ( )Hz EI Lρ≈ and 4162 68 ( )Hz EI Lρ≈ . 

 
Figure 6. Measured vibration amplitude of beam with absorber tuned to impose nodes at 0.4L and 0.6L and without 

absorber 

 
Figure 7. Frequency response of a) absorbers attached at 0.3L  b) absorbers attached at 0.65L , by experimental 

modal analysis when absorbers tuned to impose node at 0.4L and 0.6L  

 
Figure 8. Frequency response of a) beam without absorber b) beam with absorbers when absorbers tuned to impose 

node at 0.4L and 0.6L , by experimental modal analysis  
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5. Conclusions 
This investigation presents novel algorithm to find the absorber parameters to impose nodes at chosen locations on 
beam. Once the generalized program is developed, it can be used to determine the feasible absorber parameters and 
can be easily modified to accommodate beam with different boundary conditions. For imposing multiple nodes, the 
procedure gives different combinations of two absorber masses and corresponding resonance frequencies required to 
impose nodes for given damping ratio. The design constraint on maximum allowable vibration amplitudes on 
absorber masses makes the proposed procedure more practical. The results show that by imposing nodes at 
appropriate locations, the vibrations are suppressed for the segment of beam thus isolating the lumped masses. The 
experimental results show good agreement with those obtained by numerical experiments.  
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