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Abstract 
This paper was investigating the buckling problem of reinforced concrete columns considering the reinforced concrete 
as bi – modular material. Governing differential equations was driven. The relation between the non-dimensional 
transverse deflection and non-dimensional distance between centroid axis and the neutral axis "eccentricity" was 
drawn to enable the solution of the governing differential equation. The new approach was verified with different 
experimental results and different codes of practice. 
Keywords: buckling, columns, Bi – modular, modulus of elasticity, reinforced concrete 
1. Introduction: 
Bi – modular material term was recognized, where some materials  have different elastic behavior when they are 
loaded in tension and compression. Both fiber reinforced and composite materials have different moduli in tension and 
compression as displayed in Table (1). 
 
Table 1. Representative Tension and Compression Moduli Relationship for Fiber Reinforced and Composite 
Materials 

Material Representative Moduli Relationship 
Glass/Epoxy Et = 1.2 Ec 
Boron/Epoxy Ec = 1.2 Et 

Graphite/Epoxy Et = 1.4 Ec 
Carbon/Carbon Et = 2 – 5 Ec 
ZTA Graphite Ec = l.2 Et 

ATJ-S Graphite Et = 1.2 Ec 
Concrete Et = 1-1.3 Ec 

 
From the above Table, one can note that no unique pattern of a larger tension than compression moduli or vice versa 
exists. Concrete is also considered as bi-modular material, where the tensile Young’s moduli of  concrete and mortar 
mixtures were measured using a direct tension test (Isamu Yoshitake et al., 2012). The results show that the tensile 
moduli are approximately 1.0–1.3-times larger than the compressive moduli. Two material models were widely used 
in dealing with bi-modular material within the engineering research .The first model is the criterion of 
positive-negative signs in the longitudinal strain proposed (Bert, 1977). This model can be applied to orthotropic 
materials. The other model is the criterion of positive-negative signs of principal stress proposed (Ambartsumyan, 
1986). This model can be applied to isotropic materials, where The basic assumptions of this model are:  
(1) The investigated body is continuous, homogeneous, and isotropic. 
(2) Small elastic deformation is assumed, and the general law of continuum mechanics is applicable.  
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(3) When the principal stresses are uniformly positive or uniformly negative, the three basic equations are essentially 
the same as those of classical elastic theory; when the signs of the principal stresses are different, the equilibrium 
equation and the geometry equation are identical to those of classical elastic theory, with the exception of the physical 
equations (constitutive equations) where the stress-strain relationship is bilinear in the elasticity theory of different 
moduli. 
The Ambartsumyan material model was compared the criteria for consistent material and found to violate the 
requirement of symmetry compliance, this improved model called the weighted compliance matrix (WCM) material, 
which can be extended by deduction to more complicated situations (R. M. Jones 1977). The basic assumptions of this 
model and its development, several innovative computational methods, and some important engineering applications 
were reviewed (Jun-Yi Sun et al., 2010). 
The transfer-matrix approach was used to determine the small-deflection static behavior of bi-modulus beams, 
including transverse shear deformation. The effects of axial load and non-natural boundary conditions were 
considered. Exact closed-form solutions were also presented for special cases in which the neutral-surface location 
was constant along the beam axis (Tran & Bert, 1982). 
The bifurcation buckling of a uniform, slender, cantilever column constructed of a bi-modular material was treated by 
three different approximate techniques: finite difference, segmentation (transfer matrix), and energy (Bert & Ko, 
1985). The buckling and post-buckling analysis of bi-modulus circular and annular plates was treated and the problem 
was solved using annular finite elements. The constitutive matrix based on the "Jones model" was used for the analysis 
(Srinivasan & Ramachandra, 1989). Some composite materials and synthetic fibers with known bi-modular behavior 
were compared to wood and wood fibers in an attempt to find a new model for wood and wood fiber (Conners & 
Medvecz, 1992). An analytical model for Euler buckling was developed for composite structural members with open 
or closed thin-walled sections. Failure envelopes for some commercially available structural shapes were presented 
and the presented analytical model could be used to predict the behavior of any new material (Barbero & Raftoyiannis, 
1993). The analytical solution was deduced for bending-compression column subject to combined loadings by the 
flowing coordinate system and phased integration method. The finite element program was compiled for calculation, 
and the comparison between the result of finite element and analytical solution were given too (Yao & Ye, 2004). 
The flexural problem was chosen to investigate the response of bi-modular material, since the two regions, one of 
tension and one of compression, can be identified easily using simple intuition. The stress was assumed continuous 
across the boundary of the two regions and  the discontinuities of stress across the boundary of the two regions 
problems were considered (Michel Destrade et al., 2009).  
A semi-analytical method for the critical buckling loads of variable–cross section slender rods with different moduli 
was developed based on the variational principle. By developing a nonlinear iterative program and using the 
variational iteration method, the critical buckling loads were obtained. Then, buckling tests and numerical simulation 
were conducted for slender rods made from graphite with different moduli (Yao & Ma, 2013). 
A numerical model to simulate the nonlinear behavior of slender RC columns considering the long-term deformations 
of concrete was presented (Kwak & Kim, 2006). The effect of a material uncertainty on the buckling of 
inhomogeneous reinforced concrete columns was investigated (Shahsavar et al., 2013), material properties affect the 
critical value of the buckling loads. Also sensitivity analysis of critical loads of various parameters such as E, I and L 
was investigated. 
An investigation of reinforced concrete columns and beam-columns were carried out (Tim & Hansen, 2002). A linear 
elastic – perfectly plastic material behavior of the reinforcement and a parabolic material behavior of the concrete with 
no tensile strength were assumed, the behavior of columns and beam-columns are analyzed numerically and compared 
with experimental data 
2. Neutral Axis Position: 
Consider a uniform slender rod of length L, with rectangular cross section of dimensions b×h. The column own weight 
is neglected and the column is subjected to the compression force P. When the compression increases to the critical 
buckling load the bending deformation occurs in the slender column and the cross section is divided into a tension 
zone and compressive zone as shown in the Figure 1. 
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Figure 1. Geometrical properties of Considered Column and Cross Section 1 – 1 of Column With Stress and Strain 

Distribution 
 
One should note that the neutral axis of the cross section will not coincide with the centroidal axis, where the column 
is constructed of bi-modular material, and it can be deduced for stress and strain distribution shown in the cross 
section. 
As shown in Figure 1, the origin point was chosen to lie on the neutral axis and hence when the centroidal axis became 
at the right of the neutral axis the eccentricity distance e will be positive and when it became at the left of the neutral 
axis, it will be negative. 
One should not that neutral should not be out of the section to ensure that the concept of bi-modular material is 
satisfied. From Figure 1, the position of the neutral axis can be determined as follows: 

 ఌ೟ఌ೎ = ೓మା௘೓మି௘  (1) 

 ఌ೟ఌ೎ = భమା೐೓భమି೐೓  (2) 

Put ௘௛ = ݁̅, and it will be called non-dimensional eccentricity. 

 ఌ೟ఌ೎ = భమା௘̅భమି௘̅  (3) 

Hence: 

 ఙ೟ఙ೎ = ா೟ቀభమା௘̅ቁா೎ቀభమି௘̅ቁ  (4) 

 ఙ೟ఙ೎ = ∗ܧ ቀభమା௘̅ቁቀభమି௘̅ቁ  (5) 

Where: ܧ∗is the bi-modular ratioா೟ா೎. 
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The compression force Pat any cross section can be calculated as: 

 ܲ = ଵଶ ௖ܾߪ ቀ௛ଶ − ݁ቁ − ଵଶ ௧ܾߪ ቀ௛ଶ + ݁ቁ  (6) 

By substitution of equation (5) in equation (6), one can obtain that: 

 ܲ = ఙ೎௕௛ଶቀభమି௘̅ቁ ൤ቀଵଶ − ݁̅ቁଶ − ∗ܧ ቀଵଶ + ݁̅ቁଶ൨  (7) 

Also, The moment can be obtained as: 

ܯ  = ଵ଺ߪ௧ܾ ቀ௛ଶ + ݁ቁ ∗ ሺℎ − ݁ሻ ∗ ܾ + ଵ଺ ௖ܾߪ ቀ௛ଶ − ݁ቁ ∗ ሺℎ + ݁ሻ ∗ ܾ (8) 

By substitution of equation (5) in equation (8), one can obtain that: 

ܯ  = ఙ೎௕௛మ଺ቀభమି௘̅ቁ ൤ቀଵଶ − ݁̅ቁଶ ሺ1 + ݁̅ሻ + ∗ܧ ቀଵଶ + ݁̅ቁଶ ሺ1 − ݁̅ሻ൨  (9) 

From the equilibrium at any section: 

ܯ  = −ܲ ∗ܹ  (10) 
Where, W is the transverse deflection of the column. 
By substitution from equations (7) and (9) in (10), one obtains: 

 ഥܹ = ଵଷ ா∗ቀభమା௘̅ቁమሺଵି௘̅ሻାቀభమି௘̅ቁమሺଵା௘̅ሻா∗ቀభమା௘̅ቁమିቀభమି௘̅ቁమ   (11) 

Where: ഥܹ = ௐ௛ is the non dimensional transverse deflection. 
Equation (11) is the non-dimensional relation between deflection and the eccentricity (the position of the neutral axis), 
one should note that |݁̅| ൏ ଵଶ to keep the concept of bi-modular material. 
The following Figure 2 shows plots of the Equation 11: 

 

 
Figure 2. Relation Between Non-dimensional Transverse Deflection and Non-dimensional Eccentricity 

 
It can be noted from the above Figure 2 that the bi-modular section of the column is considered from the 
non-dimensional eccentricity of ଵଶ, which is called the boundary of the core of the considered section. 
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3. Eigenvalue Analysis 
Herein, the axial deformation of the column is neglected, small transverse deflection and plane cross section 
assumptions are also taken. The bending normal strain of a random point in the x- direction can be expressed as: 

௫ߝ  = ݕ ௗమௐௗ௫మ    (12) 

Then, for section of bi-modular material: 

௧ߪ  = ௧ܧ ∗ ݕ ௗమௐௗ௫మ ௖ߪ   ,  = ௖ܧ ∗ ݕ ௗమௐௗ௫మ   (13) 

Where: ߪ௧ and ߪ௖ are the tension and compression stresses. 
The bending moment at any section can be determined as: 

ܯ  = ׬ ೓మା௘଴ݕ݀ݕ௧ߪܾ + ׬ ೓మି௘଴ݕ݀ݕ௖ߪܾ   (14) 

By substitution from the equation (14) into equation (15), one can obtain: 

ܯ  = ௧ܧܾ ቀ೓మା௘ቁయଷ ௗమௐௗ௫మ + ௖ܧܾ ቀ೓మି௘ቁయଷ ௗమௐௗ௫మ   (15) 

The above equation (16) can be put in the following form: 

ܯ  = ௕௛యଷ ௖ܧ ൤ቀଵଶ + ݁̅ቁଷ ∗ܧ + ቀଵଶ − ݁̅ቁଷ൨ ௗమௐௗ௫మ   (16) 

By substitution from equation (17) in equation (10), one obtains: 

 ௕௛యଷ ௖ܧ ൤ቀଵଶ + ݁̅ቁଷ ∗ܧ + ቀଵଶ − ݁̅ቁଷ൨ ௗమௐௗ௫మ = −ܲ ∗ܹ  (17) 

Equation (18) can be rearranged and put in non-dimensional form as: 

 ௗమௐഥௗ௫̅మ = − തܲ ௐഥ൤ቀభమା௘̅ቁయா∗ାቀభమି௘̅ቁయ൨  (18) 

Where: ̅ݔ = ௫௅ is the nondimentional coordinate. 

തܲ = ଷ௉௅మ௕௛యா೎ is the nondimensiol force. 

As previously mentioned that bi-modular section is considered from the non-dimensional eccentricity of 1/2, hence 
the column of bi-modular material should not be governed by the single differential equation. 
The Euler's formula should be applied to the parts that don't behave as a bi-modular section, then the governing 
equation for these parts is: 

 ௗమௐഥௗ௫̅మ = − ௉ସത ഥܹ   (19) 

3.1 Boundary Conditions 

    (20) 

3.2 Continuity Conditions 
Again at the section where the column transferred from unimodular to bi-modular and vise versa the non-dimensional 
transverse deflection ഥܹ = ଵ଺ (i. e ݁̅ = ଵଶ). 

ഥܹ ሺ0ሻ = 0,           ݀2 ഥܹ݀2̅ݔ ሺ0ሻ = 0 
     ഥܹ ሺ1ሻ = 0,           ݀2 ഥܹ݀2̅ݔ ሺ1ሻ = 0 
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5. Solution of Governing Differential Equation: 
One can note that both the governing differential equations (18) and (19) are Eigen and like Eigenvalue form, and it 
can be noted that the equation (18) should be solved simultaneously with equation (11). The equation (11) has been 
plotted to get the corresponding non-dimensional eccentricity ݁̅ for buckling nondimensional transverse deflection, 
consequently the critical buckling load can be determined. 
It is well known that this is an instability ( ഥܹ → ∞ ), so determining the corresponding value of nondimensional 
eccentricity ݁̅ is the main target through the plot of the nondimensional eccentricity versus nondimentional 
transverse deflection on semi log scale. 
Assume the solution of the governing differential equation (19) is in the well known form: 

 ഥܹ = ൯ݔ̅ߣ√൫݊݅ݏܣ +  ሻ  (21)ݔ̅ߣ√ሺݏ݋ܿܤ

Where: 

ߣ  = ௉ത൤ቀభమା௘̅ቁయா∗ାቀభమି௘̅ቁయ൨  (22) 

From boundary condition, equation (20): ഥܹ ሺ0ሻ = 0 = 0 +  ܤ
Hence ܤ = 0 
And, where ഥܹ ሺ1ሻ = 0 =  ൯ݔ̅ߣ√൫݊݅ݏܣ
Hence ܣ = 0, which leads to trivial solution. 

 Or √ߣ =  (23)   ߨ݊

Where ݊ = 	0, 1, 2, …. 
Then: 

ଶߨ  = ௉ത൤ቀభమା௘̅ቁయா∗ାቀభమି௘̅ቁయ൨    (24) 

6. Bi-modular Material Approach For Reinforced Concrete Columns: 
 

 

Figure 2. New Approach Procedure 
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Modern researches show that the concrete can be considered as bi-modular material where the tensile modulus of 
elasticity is about 1 - 1.3 times the compressive modulus of elasticity, this property leads to a new approach to dealing 
buckling problem of reinforced concrete columns, where at buckling state the stress distribution will be as shown in 
Figure 1 then the new solution of the buckling problem can be summarized in the following Figure 2. 
7. Results and Discussion 
O.Bauman (Tim Gudmand-Høyer and Lars Zenke Hansen 2002) investigated simply supported, concentrically loaded 
columns with cross section 200× 100 mm, W.Gehler and A.Hütter (Tim Gudmand-Høyer and Lars Zenke Hansen 
2002) investigated columns with cross section 160× 140 mm and F. N. Pannell and J. L. Robinson (Tim 
Gudmand-Høyer and Lars Zenke Hansen 2002) investigated columns with cross section 95.3× 63.5 mm, different 
slenderness and reinforcement ratios were considered. The behavior of columns was analyzed numerically, according 
to the new approach and compared with the different experimental data. The following Tables (2), (3) and (4) show the 
results of the new approach and experimental data. 
 
Table 2. Comparison of Bi-modular Approach and W. Gehler and A. Hütter Experimental Data 

b(m) h(m) fc(Mpa) L/h Ec(Mpa) Et(Mpa) E* Pnew App. PExp.(KN) Pnew App./PExp.

0.16 0.14 19.3 40 19300 2.05E+04 1.062176 229.3238 249.55 0.9189 
0.16 0.14 19.4 30 19400 2.05E+04 1.056701 408.7111 391.9 1.0428 
0.16 0.14 20.7 25 20700 2.35E+04 1.135266 651.971 515.6 1.2644 
0.16 0.14 24 40 24000 3.00E+04 1.25 311.1429 305.7 1.0178 
0.16 0.14 13.4 30 13400 1.34E+04 1 274.5228 257.7 1.0652 

 
Table 3. Comparison of Bi-modular Approach and F. N. Pannell and J. L. Robinson Experimental Data 

b(m) h(m) fc(Mpa) L/h Ec(Mpa) Et(Mpa) E* Pnew App. PExp.(KN) Pnew App./PExp.

0.0953 0.0635 19.1 41.6 19100 2.05E+04 1.0732 56.9919 60.9 0.9358 
0.0953 0.0635 18.3 41.6 18300 1.83E+04 1 52.6743 74.7 0.7051 
0.0953 0.0635 17 27.2 17000 1.70E+04 1 114.457 99.6 1.1491 
0.0953 0.0635 21.3 32 21300 2.40E+04 1.1267 110.180 98.7 1.116 
 
Table 4. Comparison of Bi-modular Approach and O. Bauman Experimental Data 

b(m) h(m) fc(Mpa) L/h Ec(Mpa) Et(Mpa) E* Pnew App. PExp.(KN) Pnew App./PExp.

0.178 0.14 27.7 32.1 27700 3.15E+04 1.1371 589.247 685.4 0.8597 
0.198 0.098 26.2 32.8 26200 3.10E+04 1.1832 424.597 392.8 1.080 
0.2 0.1 26.2 32.1 26200 3.10E+04 1.1832 456.934 402.6 1.134 

0.25 0.16 35.3 40.7 35300 3.53E+04 1 701.6397 667.8 1.0506 
 
From the above Tables (2), (3) and (4), good agreement has been found. Also for more verification of the bi-modular 
approach the results of calculations according to the some codes of practice like Danish Code of Practice [18] and ACI 
[17] have been compared with the new approach as shown in the following Table (5).  
 
Table 5. Comparison of Bi-modular Approach and Danish & ACI Codes of Practice 

b(m) h(m) fc(Mpa) L/h Ec(Mpa) Et(Mpa) Pnew App. PACI.(KN) PDAN.(KN) Pnew App./PDAN. Pnew App./PACI.

0.16 0.14 19.3 40 19300 2.05E+04 229.323 237.942 160.074 1.4326 0.9637 

0.0953 0.0635 19.1 41.6 19100 2.05E+04 56.991 59.123 49.550 1.1501 0.9639 
0.25 0.16 35.3 40.7 35300 3.53E+04 701.639 555.040 506.22 1.386 1.2641 
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A good, but a bit conservative, agreement has been found which may due to the conservative nature of the codes of 
practice. 
To stand on the efficiency of the new bi-modular approach, the critical buckling load of bi-modular approach with 
respect to the critical buckling load of experimental and DAN & ACI codes results versus the bimodular ratio E* was 
plotted as shown in the Figure 3. 
 

 
Figure 3. Bimodular Approach Results With Respect to Experiment and DAN & ACI Codes Results Versus 

Bi-modular ratio (E*) 
From the above figure, it can be noted that as the bi-modular ratio increase the results of bimodular approach became 
close to the experimental results, which mean that this approach made a good model for the buckling problem of the 
column. Also, it can be noted that as the bi-modular ratio increase above 1.1 the results of the critical buckling load 
according to the codes of practice began to diverge from the results of experiments.  
8. Conclusion 
The study of the buckling problem of reinforced concrete columns using bi-modular concept gives good agreement 
with experimental and codes of practice results and leads to: 

• As the bimodular ratio ቀܧ∗ = ா೟ா೎ቁ of the concrete increases the new bi-modular approach is efficient in studying 

the reinforced concrete columns buckling problem. 

• As the bimodular ratio ቀܧ∗ = ா೟ா೎ቁ  reaches 1.1 the DAN and ACI codes of practice diverge away from 

experimental results.   
As a future work, the reinforcement ratio effect should be studied to improve the bimodular approach 
Acknowledgement 
This material is based upon work supported by the Najran university under grant No. NU/ESCI/14/48. Further, the 
authors would like to express their gratitude to the Najran university for the financial support. 
Notation ܣ	 is the constant of transverse deflection function. ܤ	 is the constant of transverse deflection function.	
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ܾ	 is the width of the column cross section. ℎ	 is the depth of the column cross section. ܮ	 is the length of the column.	ܲ	 is the concentric compression force. ߝ௧	 is the tensile strain. ߝ௖	 is the compressive strain. ݁	 	 is the eccentricity between neutral and centroidal axes. ܧ∗	 is the bi-modular ratioா೟ா೎. ܧ௧	 is the tensile modulus of elasticity.	ܧ௖	 is the compressive modulus of elasticity.	݁̅  is the  non-dimensional eccentricity. ߪ௧ is the tensile stress. ߪ௖ is the compressive stress.  ܯ is the moment. 
W is the transverse deflection of the column. ݔ is the coordinate in the direction of the column length. ̅ݔ is the nondimentional coordinate. തܲ is the nondimensiol concentric force. ߝ௫ is the strain in the x- direction. ߣ is the eigen value. 
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