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Abstract 
The surface tension depends on the radius of curvature of the liquid-vapor interface. For nano-scale wetting 
phenomena of cylindrical droplets, we should consider the curvature effects of the surface tension and the line 
tension. However, previous works have not analyzed the influence of the curvature effects of the surface tension. 
In this paper, we discuss the influence of the curvature effects of the surface tension on the contact angles based the 
Kim-Lee-Han-Park equation. The hydrophilic wetting of cylindrical droplets on rough and chemically 
homogeneous non-deformable substrates were studied by methods of thermodynamics. A generalized Young’s 
equation for wetting of cylindrical droplets on chemically homogeneous and rough non-deformable substrates was 
derived based on the thermodynamic equilibrium conditions. This equation reduces to the Wenzel equation if we 
ignore the influence of line tension. For contact angles of cylindrical droplets with sufficiently large radii, a 
generalized Young’s equations were derived considering the curvature effects of the surface tension. 
Keywords: contact angle, wetting, Young’s equation, Wenzel equation, surface tension, curvature effect, 
cylindrical droplet 
1. Introduction 
Wetting phenomena are common in solid-liquid-gas systems, for instance, wetting of liquid droplets on solid 
surfaces, adhesives, lubricants and capillary penetration in to porous media (Adamson, 1990; Gennes, 
Brochard-Wyart, & Quere, 2004). Wetting abilities are important in many industrial applications, for example, the 
wetting abilities of electrolytes on electrodes plays a key role in improving the specific energy density of 
supercapacitors (Kim, Koo, Lee, & Braun, 2014) and lithium-ion batteries (Pfleging & Proella, 2014). 
In 1805, Thomas Young argued that the contact angle Yq for the wetting of spherical droplets on rough and 
chemically homogeneous substrates is determined by the following equation (Young, 1805) 

 cos SG SL
Y

LG

s s
q

s

-
=   (1.1) 

where Yq is the contact angle, LGs is the surface tension of the liquid‐vapor interface corresponds to the choice of 
the surface of tension as a dividing surface, SGs is the surface free energy per unit area of the solid‐vapor 
interface, SLs is the surface free energy per unit area of the solid‐liquid interface. 
Now, Equation (1.1) is called the Young’s equation. The Young’s equation Equation (1.1) is widely applied to 
macroscopic capillary phenomena (Pfleging & Proella, 2014; Xiao-Song et al., 2014). 
In 1878, Gibbs for the first time gave a theoretical derivation of the Young’s equation Equation (1.1) based on the 
theory of thermodynamics (Gibbs, 1928). Since then, many theoretical research works have been carried out 
(Pfleging & Proella, 2014). 
The surface tension depends on the radius of curvature of the liquid-vapor interface. For nano-scale wetting 
phenomena of cylindrical droplets, we should consider the curvature effects of the surface tension and the line 
tension. However, previous works have not analyzed the influence of the curvature effects of the surface tension. 
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The purpose of this paper is to present a theoretical study the contact angles of cylindrical droplets on hydrophilic 
substrates and discuss the influence of the curvature effects of the surface tension on the contact angles. 
2. The Helmholtz Free Energy for Wetting of a Cylindrical Droplet on Rough Substrate 
Consider a single-component cylindrical liquid droplet in contact with chemically homogeneous and rough 
substrates. 
If the contact angle less than 90。, then we say that the solid surface is hydrophilic. If the contact angle larger than 
90。, then we say that the solid surface is hydrophobic. We only consider the wetting of a cylindrical droplet on 
hydrophilic solid surface. An illustration of hydrophilic wetting is shown in Figure 1. 
Introducing Gibbs’s concept of dividing surface and the concept of dividing line (Gibbs, 1928; Ono & Kondo, 
1960; Rowlinson & Widom, 1982), the above solid-liquid-vapor system can be divided into six subsystems, i.e. 
liquid phase, vapor phase, the liquid-vapor interface, the solid-liquid interface, the solid-vapor interface and the 
three-phase contact line. 
Therefore, the total Helmholtz free energy F of the system is the sum of the Helmholtz free energies of these seven 
parts. Thus, we have 
 

 

Figure 1 an illustration of hydrophilic wetting of a cylindrical droplet on a rough substrate. 
 L G LG SL SG SLGF = F  + F + F  + F  + F  + F  (2.1) 
where F is the total Helmholtz free energy, LF , GF , LGF , SLF , SGF  and SLGF  are the Helmholtz free energies of 
the seven parts respectively. 
The Helmholtz free energies of these seven parts can be written as 

 L L L L LF  = -p V  + Nm   (2.2) 

  G G G G GF  = -p V  + Nm   (2.3) 

 LG LG LG LG LGF  = A Ns m+   (2.4) 

  SL SL SL SL SLF  = A  + Ns m   (2.5) 

 SG SG SG SG SGF  = A  + Ns m   (2.6) 

 SLG SLG SLG SLGF  = L Nk m+  (2.7) 

where Lp and Gp are the pressures of the liquid phase and the vapor phase respectively, LV and GV are the 
volumes of the liquid phase and the vapor phase respectively, m is the chemical potential of the six subsystems, 

, , , ,L G LG SL SGN N N N N and SLGN are the mole numbers of molecules of the liquid phase, the vapor phase, the 
liquid‐vapor interface, the solid‐liquid interface, the solid‐vapor interface and the three‐phase contact line 
respectively, ,LGA SLA and SGA are the surface area of the liquid‐vapor interface, the solid‐liquid interface, the 
solid‐vapor interface respectively, ,LGs SLs and SGs are the surface tensions of the liquid‐vapor interface, the 
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solid‐liquid interface, the solid‐vapor interface respectively, SLGL is the value of the length of the three‐phase 
contact line, k is the line tension. 
In order to calculate the geometrical quantities in the above equations, we may introduce the following 
assumption: 
Assumption 1: Suppose the equilibrium shape of a droplet on a rough and homogeneous solid substrate is a part of 
a cylinder which was cut by a plane parallel to the axis of the cylinder.  
Based on Assumption 1, the total Helmholtz free energy F of the system is 
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where R is the radius of the cylindrical liquid droplet, q  is the contact angle, L is the length of the 
cylindrical liquid droplet, t A is the total surface area, sr  is the surface roughness factor, Lr  is the line roughness 
factor. 
3. Generalized Young’s Equations based on Thermodynamic Equilibrium Condition 
The purpose of this section is to derive a generalized Young’s equations for cylindrical droplets on rough and 
homogeneous solids by methods of thermodynamics. 
According to Gibbs’s concept of dividing surface (Ono & Kondo, 1960), we can choose an arbitrary conformal 
surface as a dividing surface. Now, we suppose that the radius R of the dividing surface has already been chosen 
according to some fixed conditions. The contact angle q now becomes variable. The thermodynamic equilibrium 
condition at a fixed temperature T of an open system is (Nijmeijer, Bruin, Woerkom, & Bakker, 1992) 

 
,

0,
T

F

mq
æ ö¶ç ÷ =ç ÷¶è ø

  (3.) 

where the subscript T and m stands for fixed temperature T and fixed chemical potential m . 
It is convenient to introduce the concept of grand potential to treat an open system. The definition of the grand 
potential  of a system is (Rowlinson & Widom, 1982) 

 i i i
i=1

= (F - N ),
t

mW å   (3.2) 

where t  is the number of subsystems of the system, iF  is the Helmholtz free energy of the i‐th subsystem, im  
is the chemical potential of the the i-th subsystem, iN  is the mole numbers of molecule of the the i-th subsystem. 
Putting Equation (3.2) into Equation (3.1), the thermodynamic equilibrium condition becomes (Nijmeijer, Bruin, 
Woerkom, & Bakker, 1992) 
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Putting Equation (2.8) into Equation (3.2), the total grand potential W of the above system is 
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Putting Equation (3.4) into Equation (3.3), we have 
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 (3.5) 

where 

 
2

1 ( sin cos ) ,f R Lq q q= -   (3.6) 

 2 2 ,f RLq=   (3.7) 

 3 2 sin ,f LR q=   (3.8) 

 4 t, Af =  (3.9) 

 5 2 .f L=   (3.10) 
According to Gibbs’s concept of dividing surface (Gibbs, 1961; Rowlinson & Widom, 1982), we can choose an 
arbitrary conformal surface as a dividing surface. Now, the radius R of the dividing surface has already been 
chosen according to some fixed conditions. At the fixed temperature T and fixed chemical potential, the pressure 

Lp , pG  and surface tension will not influence the contact angle q . Thus, in order to simplify Equation (3.5), we 
introduce the following assumption. 
Assumption 2: Suppose the following equations are valid for the wetting of cylindrical droplets on rough and 
chemically homogeneous non‐deformable substrates 
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We have the following results 
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Putting Equations (3.11-3.19) into Equation (3.5), we obtain 
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It is known that a generalized Laplace’s equation of a free cylindrical droplet in vapor can be written as (Wenzel, 
1936) 
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Where the differential in square bracket[ ]denotes the change resulted from a mathematical variation of the 
position of this dividing surface by the amount dR in the same physical system under the same fixed physical state. 
Applying Equation (3.21), Equation (3.20) becomes 
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  Equation (3.22) is a generalized Young’s equation for wetting of a cylindrical droplet on chemically homogeneous 
and rough non‐deformable substrates. Equation (43) is the main results of this work. 
Following Gibbs (Kim, Lee, Han, & Park, 2006; Nijmeijer, Bruin, Woerkom, & Bakker, 1992), we introduce the 
concept of surface of tension Ms as follows 

 LGd 0,
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  (3.23) 

Where R s is the radius of the surface of tension sM  
If we choose the surface of tension sM as the dividing surface, then Equation (43) becomes 
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Equation (3.24) is a useful generalization of the Young’s equations Equation (1.1) for wetting of cylindrical 
droplets. 
If we neglect the second term on the right side of Equation (3.24), we have 

 
cos .SG SL

LG
sr
s s

q
s
-

=    (3.25) 

Equation (3.25) is the Wenzel equation (Wenzel, 1936).  
4. Brief Review of Curvature Effects of Surface Tension of Cylindrical Droplet 
In 2006, Kim, Lee, Han, and Park (2006) obtained the following equation for the curvature effects of surface 
tension of cylindrical droplets 
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where ( )LG sRs  is the surface tension of a cylindrical droplet with radius sR , sR  is the radius of Gibbs’ surface 
of tension, G e sR Rd º - , eR  is the radius corresponding to the equimolar dividing surface. 
For sufficiently large droplets, we neglect 3 3/G sRd

 
and 2 2/G sRd , and treat Gd  as the constant Td , Equation (4.1) 

can be solved. The result is 
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where s¥ is the surface tension of plane surface with radius sR = ¥ , lim
s

T GR
d d

®¥
º . 

Td is usually called the Tolman length in the literatures (Rowlinson & Widom, 1982). 
We have the following Taylor’s expansion 
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Applying Equation (4.3), Equation (4.2) can be expanded as 
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5. Generalized Young’s Equation Considering the Curvature Effects of the Surface Tension 
Using Equation (4.2), Equation (3.24) can be written as 
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Equation (5.1) is a generalized Young’s equation for spherical droplets on rough but chemically heterogeneous 
non-deformable substrates considering the curvature effects of the surface tension 

LGs . Equation (5.1) is one of the main results of this work. 
Applying Equation (4.3), Equation (5.1) becomes 
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According to experiments (Adamson, 1990), the curvature effects of the surface tension LGs  of macroscopic 
cylindrical droplets can be neglected. However, for nano-scale cylindrical droplets, the curvature effects of the 
surface tension LGs  are important (Wenzel, 1936; Rowlinson & Widom, 1982; Adamson, 1990; Nijmeijer, 
Bruin, Woerkom, & Bakker, 1992; Gennes, Brochard-Wyart, & Quere, 2004;). For droplets with sufficiently 
large radii, if we neglect 
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6. Conclusion 
The hydrophilic wetting of cylindrical droplets on rough and chemically homogeneous non-deformable substrates 
were studied by methods of thermodynamics. A generalized Young’s equation for wetting of cylindrical droplets 
on chemically homogeneous and rough non-deformable substrates was derived based on the thermodynamic 
equilibrium conditions. This equation reduces to the Wenzel equation if we ignore the influence of line tension. It 
is known that the surface tension depend on the radius of curvature of the liquid-vapor interface. For nano-scale 
wetting phenomena, we should consider the curvature effects of the surface tension and the line tension. However, 
previous works have not analyzed the influence of the curvature effects of the surface tension. Based the 
Kim-Lee-Han-Park equation, we discuss the influence of the curvature effects of the surface tension on the contact 
angles. For contact angles of cylindrical droplets with sufficiently large radii, a generalized Young’s equations 
were derived considering the curvature effects of the surface tension. 
Acknowledgments 
This work was supported by the Key Project of Science of the Education Bureau of Henan Province (Grant No. 
15A130001) and the Doctor Research Foundation of Henan Polytechnic University (Grant No. 72515‐466). 
References 
Adamson, A. W. (1990). Physical Chemistry of Surfaces. New York: John Wiley Sons. 
Gennes, P. G. d., Brochard-Wyart, F., & Quere, D. (2004). Capillarity and wetting phenomena: drops, bubbles, 

pearls waves. New York: Springer-Verlag. 



www.ccsenet.org/mer Mechanical Engineering Research Vol. 5, No. 2; 2015 

23 

Gibbs, J. W. (1928). The Collected Works of J. Willard Gibbs (vol. 1, Thermodynamics). New Haven: Yale Univ. 
Press. 

Gibbs, J. W. (1961). The Scientific Papers of J. W. Gibbs (Vol. 1). New York: Dover. 
Kim, B. G., Lee, J. S., Han, M., & Park, S. (2006). A molecular dynamics study on stability and thermophysical 

properties of nanoscale liquid threads. Nanoscale and Microscale Thermophysical Engineering 10, 283. 
http://dx.doi.org/10.1080/15567260600902061 

Kim, S. K., Koo, H. J., Lee, A., & Braun, P. V. (2014). Selective Wetting-Induced Micro-Electrode Patterning for 
Flexible Micro-Supercapacitors. Advanced Materials, 26, 5108. http://dx.doi.org/10.1002/adma.201401525 

Nijmeijer, M. J. P., Bruin, C., Woerkom, A. B. V., & Bakker, A. F. (1992). Molecular dynamics of the surface 
tension of a drop. J. Phys. Chem., 96, 565. http://dx.doi.org/10.1063/1.462495 

Ono, S., & Kondo, S. (1960). Molecular Theory of Surface Tension in Liquids. In S. Flugge (Ed.), Encyclopedia of 
Physics (volume 10). Berlin: Springer-Verlag. 

Pfleging, W., & Proella, J. (2014). A new approach for rapid electrolyte wetting in tape cast electrodes for 
lithium-ion batteries. Journal of Materials Chemistry A, 2, 14918. http://dx.doi.org/10.1039/C4TA02353F 

Rowlinson, J. S., & Widom, B. (1982). Molecular Theory of Capillarity. Oxford: Clarendon Press. 
Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 

28(8), 988-994. 
Xiao-Song, W., Shu-Wen, C., Long, Z., Sheng-Hua, X., Zhi-Wei, S., & Ru-Zeng, Z. (2014). A Generalized 

Young's Equation for Contact Angles of Droplets on Homogeneous and Rough Substrates. J. Adhesion Sci. 
Tech., 28, 161. http://dx.doi.org/10.1080/01694243.2013.833401 

Young, T. (1805). An essay on the cohesion of fluids. Philos. Trans. Roy. Soc. London, 65. 
 
Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/3.0/). 


