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Abstract

This paper analyzes the dynamics of mechanical systems with suspended loads, such as bridge cranes, monorail
hoists, mining machinery, etc. The considered mechanical system is composed of a load, twice elastically
suspended from an elastic beam via another load. Two dynamical models which respect the kinetic energy of the
elastic ropes are built for the system and their corresponding differential equations of motion are obtained. The
vibration of the mechanical system is described by a coupled system of two ordinary and n(n=1,2,...) partial
differential equations. The nonlinear restoring forces are linearized via the method of equivalent linearization and
an analytical solution is obtained for the differential equations of both dynamical models simultaneously, using
general initial conditions. The constants of integration are determined analytically for a specific instance of the
initial conditions, which reflects an important practical case. The mechanical system is simulated numerically with
initial conditions corresponding to the typical regimes of operation of real systems with suspended loads.

Keywords: analytical methods, suspended loads, vibration, dynamic model, elastic beam
1. Introduction

Mechanical systems with suspended loads, such as bridge cranes, monorail hoists, mining machinery, etc., are
widely used for automating the transportation process in various sectors of the production industry. These systems
possess interesting and diverse dynamic prosperities, the analysis of which is crucial for the improvement of
existing and the introduction of new equipment.

The dynamics at points of suspension of elastic beams are analyzed in the classical monographs (Den Hartog, 1956,
Timoshenko, Young, & Weaver, 1974; Panavko, 1976, De Silva & Clarence, 2000; Lurie, 2001). Fryba (1999),
Timoshenko et al. (1974) present a solution for the vibration of a simply supported elastic beam caused by moving
loads. A beam model with irregularities, subjected to a moving system with two degrees of freedom is presented by
Fryba (1999). The model is analyzed using Runge-Kutta-Nystrom’s method. Andrianov, Danishevs’ky, and
Ivankov (2010) presented asymptotic methods for natural, free, and forced oscillations of beams and plates. The
movement of a mechanical system with a suspended load is modeled as a mathematical pendulum with a movable
suspension point and is analyzed via the method of Krylov-Bogolubov in (Bojaddjiev & Butschvarov, 1967;
Butschvarov, 1970). Analytical methods for solving the differential equations of motion of the mechanical systems
in question are presented in (Kostin & Saurin, 2007; Ouyang & Mottershead 2007; Martikka & Pollanen, 2014).
The advantage of exact and approximate analytical methods: Lindstedt—Poincaré method, the method of harmonic
balance, methods of averaging, the method of multiples scales etc. is that we have exact and reliable result of the
solution of a task. The method of finite elements has been used to study the vibration of elastic beams numerically
and experimentally in several related works (Taylor, Fillipou, Saritas, & Arricchio, 2003; Zvang & Zheng, 2010;
Popov, 2012; Prokic, Besevic, & Lukic, 2014). Application of numerical methods leads to receiving simply result
but it is still necessary to prove its reliability and to estimate error size.

Our previous work (Zlatanov, Buchvarov, Atanasova, 2012) presents a dynamical model of a mechanical system
with a load suspended from a simply supported elastic beam via another load. In this paper we present a
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mechanical system composed of a load, twice elastically suspended from an elastic beam via another load. The
goal is to determine the vibrations of the mechanical system with suspended loads. We use two dynamical models
to analyze the dynamic load on the elastic ropes and the beam at various displacements from the suspension point.

2. Modeling Mechanical Systems With Suspended Loads

Designing robust and reliable suspended load systems requires an accurate determination of the dynamic loads
acting on the different elements of the system. Consequently, developing a high-fidelity mechanical-mathematical
model is critical for addressing this important engineering problem.

2.1 Dynamical Models

In this paper, bridge cranes, monorail hoists, and other mechanical systems with suspended loads are represented
using two dynamical models which are shown in Figure 1 and Figure 2. These models take into account the
system's characteristics and are based on the following assumptions:

1) The beam is regarded as a body with uniformly distributed mass made of Ja homogeneous, viscoelastic
(Kelvin-Voigt type) material. The beam has length, L ; flexural rigidity, ; mass per unit length, u ;
viscoelastic parameter- k, . It is supported on two rigid supports A and B and its displacement is assumed
sufficiently small.

2) Apoint mass m is rigidly attached to the beam at distance a from support point A;

3) The first load is modeled as a point mass m, and is suspended via an elastic rope. The rope is attached to
mass m via a hinge joint. The rope is modeled as a nonlinear spring with stiffness ¢, ,c,(c, =%,¢,, %, <1),
coefficient of viscous damping c,, free length [, and linear density p,. To take into account the kinetic
energy of the rope, we determine the combined mass m, according to the following expression (Stepanov,

lo,z D,

1999): if o, = and 0<a, <1 then m,=m)+(0.333+0.019,)l,,p, , or if 1<a, <2 then

2

m, =m} +[ 0.351+0.100(c, —1) |1, p, ;
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Figure 1. Dynamic model 1 Figure 2. Dymamic model 2

4) The suspended load is modeled as a point mass m, suspended via an elastic rope and a hinge joint. The
rope is modeled as a non-linear spring with stiftness ¢, ,c;(c; = 7,¢,, 7, <1), coefficient of viscous damping
¢, , free length [, and linear density p, . To take into account the kinetic energy of the rope, the combined

lo,1 b

’
1

and

point mass m, is determined according to the following expression (Stepanov, 1999): ¢, =

0<ay<1l: m =m+(0333+0.019¢ )1, p,, orif 1<ey<2: my=m+[0351+0.100(c;, -1)]l,, p,
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5) It is assumed that without deformation the elastic axis of the beam is a straight line, which coincides with
the centers of mass of the cross sections. Let x denote this axis. It will also be assumed that the
displacements of the individual points from the axis of the beam are perpendicular to its undistorted state, i.e.
the deviations parallel to the axis will be ignored because they are second order quantities, which are
negligibly small compared to the transverse displacements. The displacements of the individual points from
the axis are confined to a single plane and are small in the sense that the restoring forces remain proportional
to them.

2.2 Differential Equations of Motion

Beam models are shown in Figure 3 and Figure 4.
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Figure 3. Beam of system 1 Figure 4. Beam of system 2

The Bernoulli-Euler equation of bending motion of a beam with viscoelastic material damping subjected to a load
of ¢(x,t)is given by Panavko, (1976):

%y y d'y
—+kJ——+EJ—=q(x,t). 1
#atz " 9rox’ ox* a(x1) O
Here, y=y(x,t) is the transverse motion at a distance x along the beam.

Vibrating systems are shown in Figure 5 and Figure 6. The vibrating system 1 and system 2 have two degrees of
freedom and the suspension points are movable. The differential equations of the small displacements can be

obtained using the method of Lagrange, direct or inverse method (Panavko, 1976). We have used the direct
method.
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Figure 6. Vibrating system 2
The mass m, in the vibrating system in dynamical model 1 is acted upon by the dynamic components of the elastic

force F,,, and the viscous drag force F,. The equation of absolute motion of mass m, relative to the
coordinate system Axy has the form:

Figure 5. Vibrating system 1
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. .. 3 .
mp,—my=-c I:(pl -/, )_(pz -1 )]_Cs [(pl -/, )_(pz -1 )] —G (pl _pz) . (2)
where [/, and /, denote the lengths of the springs in equilibrium, while p, and p, - their current lengths.

The mass m, is acted upon by the dynamic components of the elastic forces E ol F ,» and the viscous drag
forces F, F . The equation of absolute motion of mass m, has the form:

e . 3
m,py—m,y =¢ I:(pl _ll)_(p2 —12):|+63 [(pl _11)_(p2 _12):| +
¢ (pl _pz)_cz (pz _lz)_c4 (pz -1 )3 —C.pP-

Analogously, we arrive at the following differential equations for the absolute motion of the masses m, and m,
in dynamical model 2:

3

mp, —mj =—c |:(p1 _11)+(p2 -1, ):|—c3 [(pl _ll)+(p2 -1 )]3 —G (pl +,02) ) (4)

. . 3
—m,p—m,y =¢ |:(p1 _ll)+(p2 —12):|+C3 [(pl _11)"'(/02 _12):| +
+¢, (pl +p2)+cz (pz _12)+C4 (pz _lz)3 +cap2‘

Letting 7,(¢)=p,(1)—1 and 7,(t)=p,(¢t)—1, leads to the following system of differential equations of
motion:

(&)

a2’y 'y

9’y
+ky ——+EJ = ,t),
Ao Hhl e T B e als)
mlﬁ] =m1j}_cl (771 _772)_03 (771 _772)3 —G (771 _772)5 (6)

myfj, =m,j +¢, (771 -1, ) +¢ (771 -1, )3 +¢ (771 —1 ) — 6T, _047723 =1, -

The differential equations for dynamical model 2 have the form:

5
af+k0J ay4+EJay
8 otdx ax*

mifj, =mj—c, (771 +7]2)—C3 (771 +772)3 —G (771 +772)» (7
myfj, =—m,y—c, (771 +772)_C3 (771 +171, )3 —C (771 +772)_Cz772 _047723 —c,,.

q(x,t),

The boundary conditions are:

9’y(x,t)
ox?

%y (x,t
=0, y(Lt)=0, % —0 (8)

x=0 x=l

y(0,£)=0,

and the initial conditions are:
T (O) = =5 ( ) /A (O) = 771,0 =p (0)’772 (0) =Tho =P (O)_lz /A (O) = 772,0 =p, (0)’

Y(50)= 3 (). % “3(x).

(€))

3. Solving the System of Differential Equations
To solve the system of three coupled equations in Equation (6) or Equation (7) we follow a two-step approach.
3.1 First Step

In this work, we replace the elastic nonlinear forces F,,, = f,(1,)=cm, +¢y,’ and F,, =/ (m,)=c,m, + c4172

with corresponding linearized elastic forces F,,, = f, (7,)=c¢n, and F,, = f, (1,)= o 1, , determined using
direct linearization (Buchvarov, Tcherneva- Popova & Banov 1998). The coefficients ¢, ,i =1,2 are obtained by

minimizing the following integral:
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Ay i

1e)= [ ({6 )= n]am)y an L i=12, (10)

4,

i

where f; (17,)—c, 7, is the deviation of the elastic force from the linearization in the range [—AW., m,[:l ,
determined by the amplitude 4, ,. We assume that the importance (weight) of the deviation is proportional to the
x-axis, i.e. A(7,)=1n, and we find:

. 5 . 5
G =CI+7C3AM2 , G :c2+7c4Am’22. (11)

The vibration amplitudes A4, , will be determined using the method in Zlatanov, Buchvarov, & Atanasova (2012).
In null approximation, we assume that the amplitudes 4, , are equal to the amplitudes of free vibrations of the
system, which result from the particular initial conditions. We represent the systems of ordinary differential
equations from Equation (6) and Equation (7) in the following form:

allﬁl +a12ﬁ2 +b11771 +b12772 +cllnl +612772 = Ql (t)’

; N ) . (12)
ay\Tj, + ayff, + by 1), + by 11, + ey 1 + ey, = 0, (1),

* *
. ay=my, a,=a,=0,¢,=¢,¢,=¢,=-¢,b,=c, b, =b,=—c,,
where for dynamical model 1: P .. ..
ay, =m,, ¢, =¢ +c¢,,b,=c,+¢,, 0 =m1y(a,t), 0, :mzy(a,t),

* *
. a, =my, a, =a, =0,¢,=¢,¢,=¢,=¢,b,=¢,,b,=b, =¢,,
and for dynamical model 2: . . - -
ay =my, ¢ =¢, +¢, , by =c,+¢,, O, =my(a,t), O, =—m,y(a,t).

The free vibrations of the point masses m; and m, are determined by solving the following homogeneous
system:

afjy + eyt + ¢, =0,
aylly +Cy] + ], = 0.
System in Equation (13) is obtained from Equation (12) by neglecting the viscous drag and in zeroth-order

approximation assuming ¢, =¢,, ¢, =c,, mj (a,0) =0 . The solution of system from Equation (13) is known to
have the form (Ilin, Kolesnikov, & Saratov, 2001):

(13)

m=A4, sin((z)ft+0{l)+A12 sin(a);t-ka'z),

(14)
M, =ty 4, Sin(a)lt+a1 )+lu22A]2 sin(w2t+052 )a
¢, —w’a ¢~ a
where g, =-—4+—"-" p =——1— " ‘and the squares of the natural frequencies are:
CIZ ch

+ 2 4 2

«, Oy TCpa T (c“a22 +sza11) —ad;dy, (Cuczz _612)
@, = : 15

2al 1a22

The solution contains four undetermined coefficients: 4,,,4,,,0;,c, . With general initial conditions in Equation
(9), the coefficients 4,,,4,,,0,,c, can be obtained from the following system:

Mo = A, sine, + 4, sina, Tho =0 A, cosa, +w,A,cosa, , 16)
o = Uy Ay sinag + 4, sine, 771,0 = [y, 0 A, COS Y + Uy, 0, A4, COS O, .
We derive 4,,,4,,,¢,,c, for initial conditions with:
771,0:0’ 7'71,07&0» 772,0209 772,0 =0. (17

These initial conditions correspond to a common regime of operation in the real mechanical system, namely when
the rope is descending (ascending) with a constant linear velocity and its motion is suddenly stopped. Since 4,
and 4, are nonzero, the first and third equations from Equation (16), with initial conditions in Equation (17),
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imply that singy, =0 and sine, =0 and in tum ¢, =0,7,27,...and o, =0,7,27,.... As 4, and A4, are
undetermined, we can choose any value for ¢, and ¢, . From the second and fourth equations in Equation (16)
with o4 =0 and «, =0, we obtain:

A“ 2771_,3 M , A12 :_771_,3 My . (18)
D My — My D, Hy — My
These results enable us to determine A4 , and A _, for the zero approximation, and in turn via Equation (11) the

m,l
. * *
coefficients ¢, and c, .

m,2

We consider the following system of differential equations, in order to obtain the standing equilibrium
displacement of the springs with stiffness ¢," and ¢,":

ayfj, + ¢ i + e, =E* Sin(w*t)a (19)

Ay}, + ¢y +Cy011, = F, s1n(a) t).

If we let @ =0 and F =mg, F, =m,g for dynamical model 1 and F =mg, F, =-m,g for dynamical
model 2, then the expressions for 7,,7, (771 =p =l =py =1y, ) obtained from Equation (19) will
correspond to the standing equilibrium displacement of the spring. We suppose that the solution has the form:

7 =Asin(@'t) .  7,=Bsin(w') (20)

We substitute Equation (20) in Equation (19), rearrange, solve the resulting system of algebraic equations using
Cramer's method, and obtain:

FI* (_azza)*2 +¢y ) - Fz*clz F2* (_a“w*z +¢ ) _FI*Cm

A = * * > B = * * (2 1)
(_anw P+ =T ) (_azzw P+ Cy ) a6y (_al 2 P+ ST ) (_azzw Pt Cy ) Gy
Letting @ =0 in Equation (21), we get the following for the two dynamical models:
dynamical model 1 dynamical model 2
+e) 1 m, +m “te) 1 m, +m
Ast,l = [ml %"'mz * ]ga ASI,Z = M 5 Ast,l = (ml 4 * 6;2 +m, _*]ga Ast,Z = _M 5
GG G G GG =) G

At this stage, we assume that the acceleration of the points in the beam section with x =a coincides with their

9’y (x,1)
ot’

acceleration at time (=0 , mj(a,t)=m, =const . Assuming that at zero deviation

9’y (x,1)
or’

=0, we obtain Equation (12) in a form corresponding to the differential equations of small

t=0
x=a

oscillations caused by conservative and dissipative forces:

ayfjy +ayfj, + b1, + b1, +¢1p, + 51, =0,

. ) X . (22)
Ay T, + ayfi, + by 1), + byl + 1), + 5,17, =0,
We seek a solution to Equation (22) in the following form:
n=A4e" n,=4,¢e" , (23)

where 4,,4,,A are constants to be determined.

We substitute 77, and 7, from Equation (23) and their derivatives in Equation (22). The roots of the
characteristic equation
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a, > +b,A+c, a,A’ +b,A+c, 0 (24)

a A +byA+c, a,A’+b,A+c,
have the form (Butenin, Lunts, & Merkin, 1985): A=-htwi,A=-m , A=1ki, where h,w,m,k are positive
reals. For relatively small viscous damping forces, which are assumed in this work, the roots of the characteristic
equation are complex conjugates with negative real parts: —h, = @,i,— h, = @,i . Thus, the solution of Equation (22)
has the form:

m=A4,.e" sin(ot+a,)+ A,e " sin(ot+a,), 25)
1, =A,e sin(@f + 04+ Ae ™ sin(ot +a,).
We assume that the dissipative forces depend on a small parameter ¢, i.e.
b=, . (j=12; k=12) (26)

where [, are finite numbers.

We substitute Equation (26) in Equation (24), expand the characteristic equation, and keep only the first order
terms containing £, i.e. O( € ):

aAt+eal’+a,’ +ead+a, =0, 27

where a, =ay,a,,, @, = frpay, + P4y, 4 = ay\Cpp + Ay, 5 a3 = B+ Boyey = Buy = BaiCi 5 @4 = €16 — €108y -
If we let £=0 and A==ki in Equation (27), we obtain exactly the equation for the frequencies of the free
vibrations, i.e. k; = w/.*. Thus, we obtain the following good approximation for the roots A=—h* @i of the
characteristic equation:

) 1 a0’ -a, ,
o=k=0 ,h=——">—¢ (j=12), (28)
LT 224,07 —a,

The expression for /4, in Equation (28) is reasonable in the case that @, is not a multiple root of Equation (27)
when €=0.
The complete solution to Equation (22) has the form:

m=A,e"sin(ot+a,)+4,e™ sin(ot+a,),

(29)
M, =t Ay e " sin(@t+ )+ 1,4, e sin(wt +a, ),

2
¢, —w’a
where 1, =————— (,j=1,2), while with the initial conditions from Equation (17) and ¢ =0, &, =0,
C]Z
we have 4, o Hn A, —The M
@O My = My, @y My =y

The partial differential equation from Equation (6) and Equation (7) in canonical form are:
O’y kJ Oy EJ'y _4(xi)

or*  u 0tdx*  u ox* u
Using a Dirac delta function and taking the coordinate system Axy (see Figure 3) into account, we can write the
right-hand side of Equation (30) as follows:

(30

2
m 9" y(x,1)

q(x’t) = _5(x_a)mg _5('x_a)62*(772 +Ast,2)_ 5(x_a)ca772 _5(x_a) atz

—HUg

x=a
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To solve Equation (30), we can use a Fourier transform (Fryba, 1999) or we can represent the solution using
eigenfunctions X, (x),(n=1,...,00) of the elastic beam with length L, beam stiffness E.J = const, and fixed
point mass m at a distance a from the left edge of the beam (Panavko, 1976). Here, we use the second method,
i.e. the solution of Equation (30) is represented in the form:

y(x) =YX, (x), (). G31)

n=l1
The eigenfunctions X, (x),(n=1,...,0), which are independent of the viscous properties and the square of the
natural frequency p, of the elastic simply supported beam, are obtained (Zlatanov, Buchvarov, & Atanasova,
2012) in the form:

4 4
Xn(x):\/zsin(ﬂxj,ﬁnzzpnz . ! _rn EJ . ! (n=1,2,...,00) .(32)
L L 1+msin2(7zna) Lou 1+msin2(maj
Lu L Lu
We represent the right side of Equation (6) and Equation (7) in expanded form:

(60 =3, ()5, (1)

We multiply both sides with X, (x), integrate the resulting expression along the length L of the beam, take into
account the orthogonality and the normalization of the eigenfunctions, and get:

L
Iq(x,t)Xn (x)dx
S, (1)=2 :_E{Lﬂ(l—cos(ﬂn))-i—(mgicz*nz te, A, icaﬁz)sin(%aﬂ ,

L
J.an (x)dx o
0

where + is + for dynamical model 1 and — for dynamical model 2.

The eigenfunction series representation of the solution leads to the following # equations:

—2
w’l +2aﬂ‘/./l‘l +Z_9112Wﬂ :i ’ (2a’1 :MJ (33)
H 2

In this first step of the solution, we assume that the right-hand side of Equation (33) is a constant, determined by
5,(0)

the value of the functions S, (¢) at time =0, i.e. K = . If o, >p,, the system is overdamped,

n

which is typical for real elastic beams, and the solution to Equation (33) is:
K ! ot ’ pi ’ —pit
l//n = _"2 +e__2(clnep” + C2ne P )’ (34)
p}l pﬂ
where p, =./e,’—p,’> and C,,C; are integration constants.
Taking Equation (31), Equation (32), and Equation (34) into account, the beam vibration has the following form:

P(50)=2 X, (D, ()= X[ C,, e (Ce +CLe ) |, (33)
n=l1

n=l1
where C,, = \/%K; _Lzsin (%xj
p

n

from Equation (35) by X, (x), integrate over the entire length of the

n

We multiply y(x,t)L:O and =

beam, take the orthogonality of the eigenfunctions and initial conditions from Equation (9) into account, and get:

37



www.ccsenet.org/mer Mechanical Engineering Research Vol. 4, No. 2; 2014

(36)

(% j{ 008, (a5 J(p: o) [i(ox, <x>dx}.

From Equation (35) and Equation (36), we obtain the following expression for the acceleration of the points lying
in the cross section of the beam along abscissa x=a :

y(x,t) . =ze—a,,t(cl”ep:t+C2ne—p:t)=ze—a,,t C]n* Ch(p:t)"' %sh(p:t) R 37)
n=l1 n=1 C‘],,—;C_‘;,, CG,=Cy,

where: C,, = (O{n -p, )2 G, G, =(0!n +p, )2 G,

3.2 Second Step

When damping forces are present, the differential equations, describing the vibrations of the linearized system
about the static equilibrium point in Equation (12), are described in the form:

> (adi,+b,+c,m)=0,(t) (i=12). (38)

Jj=1
The symmetric square matrices of inertial, dissipative, and potential coefficients for the two dynamical models and
the matrices of generalized coordinates and forces are denoted, respectively, by:

A=l ][0 2 pmepnlesfeJn=ln ]| ] er=[o)

Then , the equations of motion from Equation (38) have the following matrix form:

Afj+Bi+Cn=Q(r). 39)
According to Lagrange's theorem and Sylvester's minorant criterion, the sufficient condition for stability of the
equilibrium of the vibrating system is satisfied, i.e. ¢, >0.
We introduce principal coordinates in vector form:
n=HP, (40)

where H =[p,,1,], whose columns are the normalized eigenvectors, and P=[p,,p,]" is a vector of principal
coordinates.

We substitute Equation (40) in Equation (39), multiply on the left by the matrix H", and obtain the matrix
equation of motion in the form:

AP+BP+CP=F, (41)
whereA"=H'AH, B =H'BH,C =H'CH and F' =H'Q(r).
The expanded form of Equation (41) is:
ap,+bp, +cp, = F, (k=12), 42)

where 7,,b,,c, are the diagonal elements of the matrices A",B",C" and F, =) s, O (t)(n=2). The
equations in Equation (42) are not coupled and their solutions can be determined for different time-dependencies

of O, (1).

1 1
The eigenvectors p,,p,, with respect to the first principal coordinate, have the form: p, :{ },uz :{ }
21 ﬂZZ

The diagonal elements of the matrices A",B",C" are:
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_ 2 2 _ 2 2
a =ay Ty =mt L m, A, =ay oy Ay, =yt T,

_ 2 o 2 2 k= 2 ok 2 2 %
cl _cll +2ﬂ21012 +Il121 622 _cl (1+Il121) +ﬂ21 CZ b cZ _Cll +2ﬂ22612 +#22 c22 _Cl (1+ﬂ22) +#22 c2 H (43)

E] =G, (1+ﬂ21)2 +:u2]20u’ Z;z =G (1+ﬂ22 )2 +:u2220w

for dynamical model 1 for dynamical model 2
m m m m
My =1- 10)12:#22:1__10)227 > My =—1+ 10)12 > ﬂ22:_1+_la)22»
Cl Cl Cl C]
Fl:Q1+,uz]Q2=(ml+,u21m2)j}(a,t), ; E:(ml_luzlmZ)j}(a’t)’
Fy =0+ 1,0, = (my + t,m, ) i (a,t), ; » = (my = w,m,) (a,t).

In canonical form, equations from Equation (42) become:

P t28p,+ 0 p =F, (k=12), (44)
b, ¢, (14+1,) + ¢ 13 F, +
c + .
where 28, =—+%=-" L2 e @l =%, and Fk:_—":ml—%kz%j}(a,t)(+ for dynamical model
ak m] +ﬂ2k m2 ak ak m] +Itl2k m2

1; — for dynamical model 2).

Taking Equation (36), Equation (37) into account when expressing £, , we can express Equation (44) in the
following form:

. = - 2 S —a,t "t —pit
P 2650, + 0 p, :Ze (Mnkep +N, e )a (45)
n=l1
m  f,, m, m, i, m,
Where Mnk = ( 2 )Cln ’ Nnk = ( 2 ) 2n *
my+ i, m, my+ i, m,

The solution of Equation (45) can be written as a sum of the solution of the corresponding homogeneous equation,
obtained with general initial conditions, and the particular solution, obtained with zero initial conditions from
Duhamel's integral:

- = Lo
pe=e¢* p, cos(a)kt)+Msin(a)kt)}+LIZe_w (Mnke””T +Nnke'p”r)efg‘(H) sinw, (1—7)d7 . (46)
, a)k a)k o n=l

We solve the Duhamel integrals in Equation (46), group the terms, and obtain the following for the principal
coordinates p, (7):

Mnk Nnk

pr=2.e % po— - + cos(@,t)+

v |:g-k (e, _p")]2 + ) [:?k ~(a, +p, )T +a)

| purEs, 1 M, & ~(a,-p))] . N [&-(a,+1))]

5 > sin (@, )+ (47
% O[5 -(a,-p)] +al [E-(a+p)] +a
+ Mnk . e‘(”‘u‘!’:)' + Nnk . e‘(”‘n*!’;)'
(&—(a,-p)] +& (& —(a,+p)] +&
Using Equation (40), we go back to the original coordinates:
n:[mJ:{l IMAJZ[ Pt P J 48)
772 ﬂZl /’lZ2 p2 ﬂ21p1 +/’122102
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and from Equation (9) and Equation (48), we determine the initial conditions for the principal coordinates in
Equation (47):
(=0 pl,() — 772,0 _/122771,0 : pl,O _ 772,0 _/122771,0 : pz,o — 771,0/121 _772,0 : pz,o — 771,0/121 _772,0 ) (49)
Moy — My Moy = Hyy Moy = Moy — My
We obtain the solutions to the partial differential equations in Equation (6) and Equation (7), with canonical form
from Equation (30), using the same method as in the first step. We substitute the functions 7, (¢),7,(¢) from
Equation (29) in Equation (30) and represent ¢(x,¢) via eigenfunction series:

q(x.t)=2.X,(x).5,(1), (50)
n=1
Then, we seek a solution to the partial differential equation in the form:
y(xt)=> X, (x)p,(1). (51)
n=I1
Using standard techniques, we obtain the following ordinary differential equations:
£ (1)

¢.ﬂ +2aﬂ¢ﬂ +ﬁﬂz¢n :nT (52)

Using the results from the first step, we obtained the following for the right-hand side:

})n(t) :K*ic;nZXn (a)$ C 772)(;1 (a) _

n

# # # , (53)
=K +e™ [A,E]I) cos (ayt)+A") sin(a)lt)J +e [A(z) cos () + A7) sin(a)zt)]

n,1

where we let: K, =— %{i—i(l—cos(;rn))+%(mgic2*AM)sin(%aﬂ,

X Ayr o« X Ao
o :Tr&[cz sing, —c, (h sino, — @, cosal)], AY ::uM[cz cosa, —c, (b cosa, + @ sine, )],
nl ﬂ n2 ’tl
X Ay s X Ay s
AS) = $M[CZ sing, —c, (h, sine, — o, cosaz)J,Aij) = $M[c2 cosa, —c, (h, cosa, + @, sine, )J ,

and £, ¥ correspondto +,—for dynamical model 1 and —,+ for dynamical model 2.

The solution of equations from Equation (52) can be written as a sum of the solution to the homogeneous equation,
obtained with general initial conditions, and the particular solution, obtained with zero initial conditions from
Duhamel's integral. The resulting expression, after rearranging terms, is:

K 1 o pirow if en w Loa o 4@, -n - p) - 4%,
e o ) C: sh S e
YRR [l s (p'lt)]+2175 kzl{e (@,~h—p,) +a '

i (@, =h,+p,)+ 45,0,
+

n,l

i k k *
Ar(l,l)a)k + AI(LZ) (an _hk _pn ) +

cos(@,t)+ -

(an —h —p: )2 + @,
) (54)
)t A,Sﬁ) (an —h, +p:)_A(k)wk

n,2
2

(an —h, +p, )2 +o,”

k k *
_Arg,l)a)k - A)(z,Z) (an - hk + pn ) —(ll,,er;

+

- sin(@,t) +e

(a,l—hk+p:)2+a)k (an—hk+p;)2+wk

A% (an -h, - p, )+ A0,

—(a" —p:)t BEER

+e

>

(an —h, —p: )2 +a)k2
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where the constants of integration in the initial conditions from Equation (9) are:

L
C:»l:l_’nzjiyo(X)Xn(x)dx—K:, C;n "C +p" Iyo
0

The expressions in Equation (32) and Equation (54) allow us to obtam the solutlon of partial differential equations
in Equation (6) and Equation (7) with initial conditions from Equation (9) in a form determined by the expansion in
Equation (51).

4. Numerical Example

The results obtained in this work were used to analyze the vibrations of a real mechanical system. The system
includes a rope electric hoist T0224 with a lifting capacity of 5 kN, lifting height of 12 m, rope diameter 5.7 mm,
mass 108 kg, and a single rail consisting of a beam with a cross-section double T-Nel8M according to GOST
19425-74. The following numerical values were used in the experiment for dynamical model 1 are shown in Table 1.

Table 1. Numerical values of variable

Beam

Length (m) L=5

Elastic module (Pa) E=2.10"
Second moment of area (m*) J =1760.10"°
Mass per unit length (kg) u=258
Viscoelastic parameter (Nsm™) k, =2.5.10"
Point mass

Mass (kg) m =48
Distance from support (m) a=1

First load and its elastic rope

Mass of first load (kg) m;, =108
Stiffness (Nm™) ¢, =279 000
Small parameter 7, =02
Linear density (kgm™) p, =0.61
Free length (m) b, =1
Suspended load and its elastic rope

Mass of suspended load (kg) m; =500
Stiffness (Nm™) c, =93124
Small parameter 7, =0.22
Linear density (kgm™) p, =0.095
Free length (m) ly, =10

The numerical simulation was based on our analytical results and was carried out with initial conditions
corresponding to one of the typical regimes of operation of suspended load systems. The load with mass
m; =500kg , suspended at a distance a=1m , is descending at a constant velocity
v=1},, =8 m/min =0.133 m/s and then its motion is suddenly stopped. The transverse motion y(x=1,7)
obtained from the first natural frequency and the shape of the first mode are shown in Figure 7 and Figure 8§,
respectively. The changes in the spring lengths 7, (¢), 77, (#) with respect to static equilibrium levels are shown in
Figure 9 — Figure 12. Figure 7, Figure 9, and Figure 11 show results obtained with small values for the viscous
damping coefficients c,,c,, while Figure 8, Figure 10, and Figure 12 show results obtain with higher values.
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Figure 8. Transverse motion » = y(x,7) ata distance
x=a where ¢, =1600Nsm™,c, =8000 Nsm"

Figure 7. Transverse motion y = y(x,¢) ata distance
x=a where ¢, =1000Nsm™,c, =800 Nsm"
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Figure 9. Change in the spring length 7, =7, (¢)
where ¢, =1000Nsm™,c, =800 Nsm"

Figure 10. Change in the spring length 7, =7, (7)
where ¢, =1600Nsm™ ,c, =8000Nsm"
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Figure 11. Change in the spring length 7, =7, (¢)
where ¢, =1000Nsm™,c, =800 Nsm™

Figure 12. Change in the spring length 7, =7, (¢)
where ¢, =1600Nsm™,c, =8000Nsm™

The elastic force F,, , obtained using the nonlinear spring model with stiffness coefficients ¢,,c; and linearized
model with stiffness coefficients ¢, is shown in Figure 13. We observe a very good agreement between the
simulation and the analytical results which is visible from the coincidence of the schedules.

The numerical simulation was programmed in Visual Fortran.
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Figure 13. Elastic force F,, = F,, (¢) in a main elastic rope

sp

The analytical results enable us to determine and analyze the dynamic load on the different elements in the
dynamical model and in turn on the elements of the suspended load system. The approach used to solve the system
of differential equations of motion is sufficiently accurate for the intended applications (Zlatanov, Buchvarov, &
Atanasova, 2012). Moreover, the proposed approach allows us to repeat the two solution steps to confirm or
increase the accuracy of the results. For example, based on the numerical simulation it is possible to specify more

9’y (x,1)
o |

x=a

precise values for 4, (i=1,2) in (11). Similarly, a specific value for m,j(a,t)=m, can be used

during the derivation of Q,(i=1,2) in Equation (12). In this case, it would be necessary to add a particular
solution to the solution of Equation (22), which considering the right-hand side of the system, would consist of
constants and can be determined from the initial conditions.

5. Conclusions

This paper considered a mechanical system composed of a load, twice elastically suspended from an elastic beam
via another load. The following conclusions can be made:

1) Two dynamical models of the mechanical system, which respect the kinetic energy of the elastic ropes,
were built. The corresponding differential equations of motion were obtained. The vibration of the mechanical
system was described by a coupled system of two ordinary and n(n =1,2,...) partial differential equations;

2) The nonlinear restoring forces were linearized by the method of equivalent linearization;

3) General representation of the system of differential equations and their analytical solution using general
initial conditions was obtained. The constants of integration were determined analytically for a specific instance
of the initial conditions, which reflects an important practical case;

4) The mechanical system was simulated numerically with initial conditions corresponding to the typical
regimes of operation of real systems with suspended loads;

5) Our simulation and analytical results can be used to investigate the dynamic loading on the different
elements in the dynamical model, and in turn on the elements of the mechanical systems with suspended loads.

The analytical solution of the system of differential equations can be used in different areas of the engineering
practice as they are necessary for performing qualitative dynamic analysis and for solving the dynamic synthesis
problem.
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