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Abstract 
The thermal shrinkage of protective clothing during fire exposure plays a crucial rule in reducing the clothing 
protective performance. The transversal reduction in the fabric perimeter around the body due to the fabric thermal 
shrinkage causes a dynamic reduction in the air gap between the clothing and the body. This leads to a dynamic 
change in the heat transfer modes within the gap. Despite of its influential effect on the clothing performance, the 
thermal shrinkage of protective clothing during fire exposure has not been yet addressed in the literature. This 
can be attributed to the absence of a gap model that can capture the reciprocal change in heat transfer modes 
within the gap due to clothing shrinkage. This paper develops a finite volume model to investigate the influence 
of the fabric thermal shrinkage on protective clothing performance. A special attention was drawn to the model 
of the air gap between the clothing and skin as it responds directly to the clothing thermal shrinkage. The 
influence of a variation in the fabric shrinkage rate and the overall reduction in the fabric dimensions was 
investigated. The paper demonstrates that the clothing protective performance continuously decreases with the 
reduction in the fabric dimensions while the decay in the clothing protective performance is limited to small 
shrinkage rates of the fabric. Moreover, this decay in the clothing performance vanishes at high shrinkage rates 
of the fabric.  
Keywords: fabric shrinkage, fire exposure, conduction-radiation, thermal radiation, finite volume method. 
1. Introduction 
Protective clothing is widely used in many industries and applications such as petroleum and petrochemical 
industries and municipal firefighting to seek protection from thermal and fire exposures. The thermal protective 
performance (TPP) of the clothing is determined by estimating heat transfer from the thermal source to the skin 
through clothing, which causes skin burns as a result. Standard bench top tests (ISO 9151, 1995, ASTM D 4108, 
1987, ASTM F, 1999, and NFPA, 2007) are used to evaluate the TPP of fabric specimens while manikin test 
(ASTM F, 2000) is used to evaluate the TPP of the whole garment at different locations of the body.  
Modeling the thermal performance of protective clothing has been extensively reported in the literature during the 
past decade. Torvi (1997) and Torvi and Dale (1999) modeled heat transfer in Kevlar®/PBI and Nomex® 
flame-resistant fabric during a flame TPP test. Mell and Lawson (2000) modeled heat transfer in multiple layers 
protective garment during radiant exposure. Tan, Crown and Capjack (1998) studied the design of flightsuit 
protective garment for optimum protection to flight personnel. Chitrphiromsri and Kuznetsov (2005) and Song, 
Chitrphiromsri and Ding (2008) modeled heat and moisture transfer through firefighters’ clothing in fire exposure 
and local flame test, respectively. Zhu and Zhang (2009) considered the fabric thermal degradation at high 
temperature during radiant exposure. Mercer and Sidhu (2008, 2009) investigated the performance of protective 
clothing with embedded phase change material. 
The air gap between the fabric and skin plays an essential role in determining the performance of protective 
clothing during fire exposure. This role was acknowledged in the literature in several studies. For example, Torvi, 
Dale and Faulkner (1999) investigated the effect of the gap width on the protective performance of a 
flame-resistant fabric during a flame TPP test. Sawcyn and Torvi (2005) and Talukdar, Torvi, Simonson and 
Sawcyn (2010) attempted to improve the modeling of the air gap in bench top tests of protective fabrics. The 3-D 
body scanning technology was used (Song, Barker, Hamouda, Kuznetsov, Chitrphiromsri, & Grimes, 2004; Kim, 
Lee, Li, Corner, & Paquette, 2002; Mah & Song, 2010a; Mah & Song, 2010b) to determine the widths and 
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distribution of air gaps between flame-resistant garment and manikin body. Ghazy and Bergstrom (2010) 
developed a numerical model for single layer protective clothing that considers the combined conduction-radiation 
heat transfer between the fabric and the skin. Then, Ghazy and Bergstrom (2011) further investigated the influence 
of the conduction-radiation in the gap between protective clothing and the skin on the overall performance of the 
clothing. Ghazy and Bergstrom (2012) also developed a model for heat transfer in multiple layers firefighters’ 
clothing that considers the combined conduction-radiation heat transfer within the air gaps between clothing layers. 
Ghazy (2013) developed a novel air gap model that stands middle way between the conduction-radiation model 
introduced in Ghazy (2011) and the approximate air gap model exists elsewhere in the literature.  
The thermal shrinkage of protective clothing in thermal or fire exposures significantly affects the clothing 
performance. The transversal reduction in the fabric perimeter around the body due to fabric thermal shrinkage 
causes a dynamic reduction in the air gap between the clothing and the body. This leads to a corresponding 
variation in the total heat transfer through the gap and an interchanging variation in its modes. In addition, the 
reduction in the gap width caused by thermal shrinkage and hence the overall protective performance of the 
clothing depends on the total reduction in fabric dimensions and the shrinkage rate of the fabric.  
The influence of the thermal shrinkage on the performance of protective clothing during fire exposure has not been 
yet addressed in the literature. This is because the lack of knowledge about shrinkage rates of fire-resistant fabrics 
during fire exposure. In addition, the approximate analysis of the air gap that most of the models in the literature 
adopted is not capable of considering the dynamic variation in the air gap between the clothing and the skin due to 
fabric thermal shrinkage. This paper numerically investigates the effect of the fabric’s thermal shrinkage during 
fire exposure on the overall performance of protective clothing. A special attention was drawn to modeling heat 
transfer through the gap since it responds directly to the fabric thermal shrinkage. The temperature dependence of 
the thermophysical properties of the air gap and the fabric was accounted for. The influence of a variation in the 
fabric shrinkage rate and the reduction in the fabric dimensions on the clothing protective performance was studied 
to capture different forms of fabric thermal shrinkage.  
2. Problem Description 
A typical protective clothing system is shown in Figure 1. The clothing system comprises a fire-resistant fabric 
that is exposed to a heat flux of about 80 kW/m2 from a lab burner, the human skin that consists of epidermis, 
dermis and subcutaneous layers and an air gap enclosed between the fabric and the skin. The energy equations 
for the clothing elements are expressed as follows.  
 

 
 

 
 
 

Figure 1. A schematic diagram of protective clothing 
 
2.1 Heat Transfer in Fire-Resistant Fabrics 
The transient energy equation for the Kevlar®/PBI fabric was introduced by Torvi (1997) and Torvi and Threlfall 
(2006) as  
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where ρ is the fabric density, 
AC  is the apparent heat capacity of the fabric, k  is the fabric thermal conductivity, 

σ  is Stefan-Boltzmann constant, gT  is hot gases temperature, gε  is hot gases emissivity, γ  is the extinction 

coefficient of the fabric and expt  is the exposure duration. 

The boundary conditions of the fabric are  
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where 
flh  is the flame convection heat transfer coefficient, cnvh  is the convection heat transfer coefficient from 

the clothing to the ambient surroundings, 
1fabε  is the emissivity of the fabric exposed surface, 

ambT  
is ambient 

temperature and 
fabLyy rq

=
′′ )(r is the emitted radiation from the fabric backside surface, which is discussed in section 

2.2. 
The initial condition of the fabric is  

ambfab TtyT == )0,(                    (4) 

2.2 Heat Transfer in the Air Gap 
The transient heat transfer in the gap is written as 
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where ρ , Pc , and k  are the density, specific heat, and thermal conductivity of the air gap, respectively and 
y

qR

∂
′′∂  

is the divergence of the radiative heat flux through the air gap. Note that for gap widths of 1/4 in. (6.4 mm) or less, 
the computed Rayleigh number within the gap is less than the critical Rayleigh number for nature convection heat 
transfer. That makes radiation and conduction are the dominant modes of heat transfer within the gap. 
The width of the gap between the fabric and the skin due to fabric shrinkage is  
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where y
 
is the air gap width at any time t , oy  is the nominal air gap width, yΔ  is the reduction in the gap width 

due to the fabric thermal shrinkage and shkt  is the time over which the fabric thermal shrinkage takes place, as 
shown in Figure 1. 
The Radiative Transfer Equation (RTE) of the air gap (Modest, 2003) is written as 
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where I  is the radiation intensity, s  is the geometric distance, rv is the spatial position, ŝ is the angular 
direction and κ  is the gap absorption coefficient. 
The unit direction ŝ  is defined in y-direction as 

yes ˆ)sin(sinˆ φθ=                                     (9) 

where θ  is polar angle, φ  is azimuthal angle and 
yê  

is unit vector in y-direction.  
The black body intensity, bI , is defined as 

π
σ 4TIb =

 
                                      (10) 

where T  is the medium absolute temperature and σ  is the Stephan-Boltzmann constant. 
The boundary conditions for the RTE of the air gap (Equation 8) are written as  
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where 
2fabε  and 

2fabρ  
are the emissivity and reflectivity of the fabric backside, 

epε  and 
epρ  are the emissivity 

and reflectivity of the epidermis surface, s′ˆ  is reflected ray unit direction, n̂  is unit normal to the surface and 
Ω′d  is solid angle containing the reflected ray. 

The divergence of radiative heat flux in the air gap energy equation (Equation 5) is calculated as 
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The radiation heat flux emitted from the fabric and that is incident on the skin surface are calculated as 
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The RTE (Equation 8) is solved along with its boundary conditions using the Finite Volume Method (Chai & 
Patankar, 2000) where the facial intensity was related to the nodal one as follows. 
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The boundary conditions for the air gap energy equation (Equation 5) are as follows. 

fabfab LyfabLyair TT
==

=
 

           0>t                (24) 

airfabairfab LLyepLLyair TT
+=+=

=
  

 0>t                (25) 

where 
epT  is the epidermis surface temperature and airL  is the air gap width. 

The initial condition of the air gap is  

ambair TtyT == )0,(                     (26) 

2.3 Heat Transfer in the Human Skin 
Heat transfer in the human skin is modeled by the bioheat transfer equation developed by Pennes (1948). The 
energy equations for the epidermis, dermis and subcutaneous layers of the skin are written as  
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where bω  is the blood perfusion rate, 
crT  is the core body temperature. 

The boundary conditions of the skin are 
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where 
airfab LLyy rq

+=
′′ )(r is the incident radiation heat flux on the skin (Equation 16) and 

epL , dsL and scL  are the 

thicknesses of the epidermis, dermis, and subcutaneous layers, respectively.  
The initial conditions of the skin are represented by a linear temperature distribution from the epidermis surface 
(32.5ºC) to the subcutaneous base (37ºC). Skin burn injury takes place when the basal layer (the base of the 
epidermis layer) temperature reaches 44oC. Henriques’ integral (Henriques & Moritz, 1947) is employed to predict 
times for the skin to receive burn injuries as follows. 
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where the values for the activation energy EΔ
 
of the skin and the pre-exponential factor P  were determined by 

Weaver and Stoll (1996) for second–degree burns and by Takata, Rouse and Stanley (1973) for third–degree burns. 
The basal layer temperature is employed in the aforementioned integral to predict times to first– and second–
degree burns. First– and second–degree burns take place when ϕ  reaches 0.53 and 1, respectively. Whilst the 
dermal base (the base of the dermis layer) temperature is employed in the integral to estimate times to third–degree 
burns, which occur when ϕ  reaches 1.  
3. Numerical Solution 
The fabric, air gap and the skin (epidermis, dermis, and subcutaneous) energy equations were solved along with 
their boundary conditions using the finite volume method (Patankar, 1980) using the Gauss-Seidel point-by-point 
iterative scheme. The solution proceeds as follows. Within each time step, temperatures calculated in the previous 
time step are used as initial guess for the iteration loop. The air gap width is updated according to Equations 6 and 
7. A uniform reduction in the air gap control volumes sizes is assumed whereas the air properties in each control 
volume do not change. Within the iteration loop, temperatures of the air gap, fabric backside and epidermis surface 
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