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Abstract 

Appropriate axial preload is necessary for the double-row tapered roller bearing used for supporting the rotor of 
the direct-drive wind turbine; its function is to ensure the rolling motions of the rollers and the long fatigue life 
of the bearing as far as possible. For this purpose, statics model of the preloaded bearing under the combined 
action of radial load, axial load and tilting moment load was established firstly; then, for a set of selected preload 
values which are different proportions of the dynamic equivalent axial load of the external bearing loads, the 
corresponding loaded roller number, maximum roller load and bearing fatigue life were obtained; thirdly, the 
effects of different preloads on the calculated indicator values were analyzed, result show that preload can 
improve the uneven load distribution among the rollers, the preload value also influence the rolling roller number 
and bearing fatigue life. A preload of 0.5 times of the dynamic equivalent axial load was selected as a trade-off 
between the rolling roller number and bearing fatigue life. 

Keywords: wind turbine, double-row tapered roller bearing, statics analysis, axial preload, rolling motion, 
fatigue life 

1. Introduction 

In spite of the global economic depression, the worldwide wind capacity reached 254000 MW by the end of June 
2012, out of which 16546 MW were added in the first six months of 2012 (World Wind Energy Association, 
2012). The reliability of wind turbines has attract more and more attention from the researcher, bearings are the 
key components of wind turbines, they need to be pay more attention as they have higher costs associated with 
repair or replacement (Kotzalas & Doll, 2010). In recent years, some research work of the mechanics problems 
of slewing bearing used for wind turbine have been conducted by the researchers. Such as the calculation of the 
static load-carrying capacity of four-contact-point slewing bearings used for the pitching system and yawing 
system of wind turbine (Aguirrebeitia, Plaza, Abasolo, & Vallejo, 2013), the contact fatigue damage of hardened 
layer of bearing raceway used for the yaw system in wind turbine, this problem was solved by constructing the 
nonlinear material constitutive equation of hardened layer (Niu, Yang, & Gao, 2013), and the effect of local 
structure change on the fatigue life of yaw slewing bearing of wind turbine, this problem was analyzed by the 
FEM software (Feng, Chen, Huang, & Wang, 2013), all the present work mainly aimed at the slewing bearings 
used for the pitching system and yawing system of the double-fed induction wind turbine. 

Direct-drive wind turbine is a new turbine architecture which has been developed in recent years, this kind of 
wind turbine eliminate the gearbox and connect the rotor directly to a permanent magnet generator. Direct-drive 
wind turbine offers significant potential because they eliminate the gear-speed increaser, which is susceptible to 
significant accumulated fatigue torque loading, related reliability issues, and maintenance costs (Bywaters et al., 
2007). 

The rotor of direct-drive wind turbine is supported by one set of slewing bearing. Double-row tapered roller 
bearing is deemed as a more suitable selection to support the rotor of direct-drive wind turbine (Lucas & Pontius, 
2005), because this kind of bearing can carry the combined actions of radial load, axial load and tilting moment 
load; and their design is built around the concept of zero slip which minimizes wear over long periods of 
operation; especially their load distribution among the rollers can be optimized to avoid load losing or exceeding 
of some rollers through appropriate axial preload. The cross section of double-row tapered roller bearing is 
shown in Figure1. In the direct-drive wind turbine, the outer ring of the bearing is connected to the nacelle main 
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Where, dc is the axial distance between two row roller centers. The axial displacement at the position of jth roller 
produced by the tilting angular displacement θ is 

   jmja d   cos5.01                                  (12) 

Where, dm is the pitch diameter of the bearing. The radial displacement at the position of each roller is produced 
by the radial displacementδr and the tilting angular displacement θ. According to Equation (10) and Equation 
(11), the total radial displacement at the position of jth roller is 

     jcrjr d  cos5.01                               (13) 

For the axial displacement at the position of each roller, in addition to the axial displacement produced by the 
axial displacementδa and the tilting angular displacement θ, the axial displacement produced by the axial 
displacementδa0 should be also considered. Then, the total axial displacement at the position of jth roller is 

   jmaaja d  cos5.001                              (14) 

Then, the total displacement at the position of jth roller along the normal direction of the outer raceway is 

      ejaejrjn  sincos 111                               (15) 

5.2 Displacement of Each Roller Position of Nacelle Side Row 

According to the same principle as above, for the nacelle side row rollers, the axial displacement at the position 
of jth roller produced by the axial displacementδa is equal to －δa. 

The total radial displacement at the position of jth roller is 

     jcrjr d  cos5.02                              (16) 

Similarly, the total axial displacement at the position of jth roller is 

   jmaaja d  cos5.002                            (17) 

The total displacement at the position of jth roller along the normal direction of the outer raceway contact is 

      ejaejrjn  sincos 222                             (18) 

5.3 Equilibrium Equations of “Roller-Inner Ring” Isolated Body 

Substituting Equation (15) and Equation (18) into Equation (6) respectively, the expressions of normal load Qe1(j) 
and Qe2(j) between the two row rollers and the outer raceway can be obtained, where, j=1,2,3,…,Z. 

In the radial direction of the bearing, the equilibrium equation of the “roller – inner ring” isolated body under the 
actions of external radial load rF and normal Qe1(j) and Qe2(j) is 

       0coscos
1

21 


Z

j
jejejer QQF                         (19) 

In the axial direction of the bearing, the equilibrium equation of the “roller – inner ring” isolated body under the 
actions of external axial load aF and normal Qe1(j) and Qe2(j) is 

     0sin
1

21 


Z

j
ejejea QQF                             (20) 

The normal load Qe1(j) acting on the rollers by the outer raceway will produce moment actions on the 
“roller-inner ring” isolated body. One part of them is the moment produced by the axial component of load Qe1(j) 
on the bearing center, another part of them is the moment produced by the radial component of load Qe1(j) on the 
bearing center. The equilibrium equation of the “roller-inner ring” isolated body under the actions of the two 
part moments and external tilting moment load M is 

          0coscoscossin5.0
1

2
1

1 







 



z

j
jje

z

j
jjeecem QQddM             (21) 

A system of nonlinear equations can be obtained by using the above three equilibrium Equations (19)-(21). If the 
design parameters of the bearing are given, the values of unknown variable δr, δa and θ can be solved 
corresponding a set of axial preload Fa0 and external loads Fr, Fa and M, and the roller loads can be calculated 
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preload of 0.5 times of the dynamic equivalent axial load was determined.  

Acknowledgements 

The research is financed by the Key Projects of Science and Technology Research of the Education Department 
of Henan Province (Grant No.14A460008).  

References 

Aguirrebeitia, J., Plaza, J., Abasolo, M., & Vallejo, J. (2013). General static load-carrying capacity of 
four-contact-point slewing bearings for wind turbine generator actuation systems. Wind Energy, 16(5), 
759-774. http://dx.doi.org/10.1002/we.1530 

Bywaters, G., Mattila, P., Costin, D., Stowell, J., John, V., Hoskins, S., … Freeman, B. (2007). Northern Power 
NW 1500 Direct-Drive Generator. US National Renewable Energy Laboratory, USA.  

Feng, Y., Chen, J., Huang, X. D., & Wang, W. (2013). Structure fatigue life analysis of a 1.5 MW smart yaw 
slewing bearing. Advanced Materials Research, 779, 664-670. 

Harris, T. A., Rumbarger, J. H., & Butterfield, C. P. (2009). Wind turbine design guide DG03: Yaw and pitch 
rolling bearing life. US National Renewable Energy Laboratory, USA. http://dx.doi.org/10.2172/969722 

Kotzalas, M. N., & Doll, G. L. (2010). Tribological advancements for reliable wind turbine performance. Phil. 
Trans. R. Soc. A, 368, 4829-4850. http://dx.doi.org/10.1098/rsta.2010.0194 

Lucas, D., & Pontius, T. (2005). Designing large diameter, closely coupled 2-row tapered roller bearings for 
supporting wind turbine rotor loading, USA, The Timken Company, USA. 

Lundberg, G., & Palmgren, A. (1947). Dynamics capacity of rolling bearings. Acta Polytechnica Mechanical 
Engineering Series, 1(3), Stockholm, Sweden. 

Niu, L. K., Yang, J. M., & Gao, J. Y. (2013). Study on contact fatigue damage of hardened layer of yaw bearing 
raceway in wind turbine. Acta Energiae Solaris Sinica, 34(8), 1415-1420.  

World Wind Energy Association. (2012). 2012 Half-year Report, WWEA Head Office, Bonn, Germany. 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/3.0/). 

 


