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Abstract 

This study numerically examines the influence of installing two identical radial adiabatic obstacles on natural 
convection within a porous layer of constant thickness. This porous layer surrounds an isothermal hot elliptical 
cylinder and is surrounded by an isothermal cold one.The obstacles’ length, angular position and radial position 
were changed in various amounts. A non-orthogonal curvilinear coordinate system is adopted, in order to treat 
the presence of the obstacles inside a two-dimensional elliptical annulus. Consequently, Finite Differences 
Techniques and ADI with Relaxation Method were used to approximate the computational regime of the 
non-Darcian-Boussinesq equation, governing the flow inside the computational porous domain. An efficient 
code of high accuracy was constructed to solve the approximated governing equations. The results showed that 
the installation of long obstacles in the meeting place of two convection cells causes an increase in heat transfer 
rates by up to 16%. Whereas the installation of short obstacles in a place lying close to the center of the major 
convection cell causes a reduction in heat transfer by up to 19%.  

Keywords: porous media, elliptical annulus, non-darcian model, natural convection, elliptic grid generation, 
obstructions 

Nomenclature Greek symbols 

a Half of the major axis, m ߙ Thermal diffusivity, mଶsିଵ 
b Half of the minor axis, m ߚ Thermal expansion coefficient, Kିଵ Da Darcy number ߛ = xොకଶ + yොకଶ ݃ Gravitational acceleration, m	sିଶ ߜ = xොకxොఎ+yොకyොఎ ܬ The jacobian ሺ= xොకyොఎ−xොఎyොకሻ ߝ = xොఎଶ + yොఎଶ 
K Permeability of porous medium, mଶ ߤ Dynamic viscosity, Pa	s 
L Length of the studied model (characteristic length), m ,ߦ Kinematic viscosity, mଶsିଵ Nu Local Nusselt number ߥ ߟ Computational region coordinates 
P Pressure, Pa ߩ Density, kg mଷ Pr Prandtl number ߶ Porosity of porous medium Ra Rayleigh number ߰ Stream function, mଶsିଵ Ra∗ Modified Rayleigh number ߱ Vorticity, sିଵ 
T Temperature, K 

Subscripts ݑ Horizontal velocity component, m	sିଵ ݒ Vertical velocity component, m	sିଵ c Cold surface 
v Velocity vector, m	sିଵ f fluid 

Accents 
h Hot surface 
i Inner cylinder surface T෡ Non-dimensional o outer cylinder surface Nuതതതത Average   
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1. Introduction 

Natural convection heat and mass transfer in porous media has been studied extensively. This is due to the 
increasing need to understand the complicated transport process for application of diverse insulation fields which 
include insulation of hot or cold pipes, aircraft cabin, nuclear and power plants and solar collector receivers. 
Moreover, the porous media are used or naturally exist in fields rather than those of insulation. For example, 
geothermal engineering, solid matrix heat exchanger (compact heat exchanger), oil extraction, underground 
disposal of nuclear waste materials, and many more. 

A special case study of natural convection inside porous media is that medium bounded by two concentric (or 
eccentric) cylinders. The previous published studies of such case have demonstrated, both experimentally and 
theoretically, some details related to the nature of fluid flow and heat transfer inside porous media. Bishop and 
Charley (1966) investigated the phenomenon of natural convection in a porous layer put between two concentric 
horizontal cylinders. The results photographically showed the fluid motion inside the enclosure. Another study 
on the same geometrical shape and boundary conditions had been both experimentally and theoretically done by 
Caltagirone (1976). He investigated the axial (3rd) direction heat transfer and concluded that there is a critical 
value for the modified Rayleigh number, across which the 3rd direction flow is undergoing taking place.Bau et al. 
(1983) carried out the experiment of Caltagirone again with two eccentric cylinders. They observed the growth 
of the multicellular in the upper part of the model. This multicellular had gradually transformed to a unicellular 
as time passes. Charrier and Mojtabi (1991) had also studied the free convection (2D) flow in a horizontal 
saturated porous annulus. They joined their numerical study with an experimental work. Their work led to 
conclude that the transition from unicellular to multicellular flow depends strongly on the initial conditions. 
Moreover, they concluded that the heat transferred in the axial direction is an unsteady state phenomenon. Sakr 
et. al., (2008) experimentally and numerically studied the natural convection inside an annulus bounded by inner 
elliptical tube and outer circular one. Their results showed that the horizontal major axis position gives more 
efficient insulation than the vertical position. Mota and Saatdjian (1995, 1999) numerically studied the hysteresis 
loop inside a circular and elliptical annuli respectively. They concluded that the behavior of the flow and (Ra-Nu) 
curve depend on the initial thermal condition. Another study for Mota et al. (2000) concluded that the judicious 
horizontal stretching of one of the annulus’s boundaries reduces heat losses with respect to concentric cylindrical 
annulus with the same amount of insulating material. Zhu et al. (2003) also numerically investigated the effect of 
the major axis position of the elliptic boundaries. They concluded that more vortices in streamlines is generated 
in the case of horizontal position. Moreover, they did mention that further investigations may be needed for the 
phenomenon to be clear and understood. 

All the aforementioned theoretical studies used the Darcian model to describe the momentum equation of the 
flow. However, Kaviany (1986) assumed a circular annulus and studied the effect of the inertia, boundary and 
velocity-square terms. His results showed that all of these effects reduces heat losses with the boundary term 
being the most significant. Moreover, an acceptable agreement between the Darcian and non-Darcian regimes 
holds for low Rayleigh and Prandtl numbers. Braga and de Lemos (2006) had a circular porous annulus and 
numerically simulated the turbulent natural convection by using a macroscopic non-Darcian two-equation model. 
They studied the dependency of the laminarization phenomenon on Darcy number and porosity.  

The effect of inserting an obstacle inside a rectangular, heated-cooled and porous cavity was studied by Bejan 
(1983). The results indicated an increase in heat losses in some cases of the horizontal obstacle’s length. On the 
other hand, a vertical obstacle of ݈/ܪ = 1 decreases the heat lost. Facas (1994) numerically tried to reduce the 
heat transfer from a hot pipe buried in a semi-infinite, saturated, porous medium, by installing two obstacles on 
the pipe’s wall. The results indicated a maximal energy saving in the case of horizontal radial position. 

In the present study the effect of inserting two radial adiabatic obstacles on natural convection within a porous 
layer of a constant thickness was numerically examined. These two obstacles were symmetrically set about the 
vertical axis of the study’s model with various amounts of length and angular position. The porous layer 
surrounds an isothermal hot elliptical cylinder and surrounded by an isothermal cold one. This study also 
assumed the 2-D non-Darcian model with Boussinesq approximation to represent the momentum equation 
governing the flow within the porous medium. 

2. Mathematical Formulation 

The physical problem of the present study is considered by a two-dimensional elliptical cross section, as 
illustrated in Figure 1. This 2D annulus is completely defined by the following equations and parameters. Firstly, 
the following equation generates the inner boundary of the annulus: 
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                     (1)
 

The hydraulic radius ratio (R) is given as follows: R = ඥܽ௢ܾ௢/ඥܽ௜ܾ௜		                                 (2) 

The thickness (t) of the porous layer is kept constant in each angular position and considered as a function of (R). 
So, it is given by: 

                        (3) 

For the thickness (t) being constant, the annulus’s outer boundary is given by: x୭ = x୧ + t . sinሺ180 − φሻ		                              (4) y୭ = y୧ + t. cosሺ180 − φሻ		                             (5) 

Where ሺ߮ሻ is the local slope angle of the inner boundary curve. 

Figure 1. Geometrical configuration of the present study 

The obstacles are set normal to the tangent of the boundary curvature as illustrated in Figure 1. Their length (l) 
are given with respect to the porous layer thickness (t). The angular position ሺߠሻ is described by the ratio of the 
circumferential length (ݏ௜) to the whole length of the circumference (ܿ௜), as the following: 

(6)
 

Where: 

(7)
 

(8) 

The present study assumed steady state, laminar and incompressible flow, with homogenous saturated porous 
medium of non-conductive solid matrix. The annulus is of isothermal boundaries, and the inner is hot ሺT୦ሻ, 
whereas the outer is cold ሺTୡሻ. The solid matrix is in thermal equilibrium with the fluid flowing inside it, and no 
viscous dissipation is assumed. The thermo-physical properties are kept constant except for density variation in 
the buoyancy force term (Boussinesq approximation). 

According to the aforementioned assumptions and considerations, the equations govern the steady-state 
two-dimensional problem in Cartesian coordinates will be as follows (Bejan, 1995; Vafai, 2005): 

൬x݅ܽ݅൰2 + ൬yܾ݅݅൰2 = 1  

ݐ = ඨ൬ܽ݅ + ܾ݅2 ൰2 + ܽ݅ ܾ݅ሺR2 − 1ሻ − ൬ܽ݅ + ܾ݅2 ൰

ߠ = ݅ܥ݅ݏ ×  ݋360
݅ݏ = න ඨ൬݀y݅݀x݅൰2 + 1 ݀x݅x݅0  

ܿ݅ = 4න ඨ൬݀y݅݀x݅൰2 + 1 ݀x݅ܽ݅0  
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Continuity 

(9)
 

Momentum 

(10)
 

and 

(11)
 

Energy 

(12) 

Where F is the non-dimensional form of the drag constant defined by the Formula (13) used by Hadim and North, 
(2005). 

(13)
 

The non-dimensional forms of the physical quantities and variables, included in the above equations or needed in 
transforming them to their dimensionless forms, are defined as the following: 

(14)
 

 

The pressure terms in Equations (10) and (11) can be eliminated by differentiating these equations with respect 
to (y) and (x) respectively, and then subtracting one from other. Hereafter, by using forms (14), the 
dimensionless governing equations in terms of vorticity and stream function, will respectively be as follows 
(Kaviany, 1986): ωෝ = −∇෡ଶψ෡				                                 (15) 

  (16)
 ∇෡ଶT෡ = 	 ൫vො. ∇෡൯T෡		                                (17) 

Where ൫uො = ∂ψ෡ ∂yො⁄ ൯ and ൫vො = −∂ψ෡ ∂xො⁄ ൯. 
The appropriate boundary conditions, in their non-dimensional forms, are listed below: 

1) Inner cylinder : 

 (18)
 

2) Outer cylinder : 

(19)
 

3) Obstacles’ surfaces : 

(20)
 

Where nො  is the non-dimensional local normal vector, and: 

(21)
 

x߲ݑ߲ + y߲ݒ߲ = 0  

∂P∂x = − μܭ ݑ − ܭ√F݂ߩ |ܞ|ݑ + μ∇2ݑ − 2∅݂ߩ ሺܞ. ∇ሻݑ  

∂P∂y = − μܭ ݒ − ܭ√F݂ߩ |ܞ|ݒ + μ∇2ݒ − 2∅݂ߩ ሺܞ. ∇ሻݒ + ρ݂g  

∇2T = ݂ߙ1 ሺܞ. ∇ሻT  

F = 1.75√150 × ∅−3/2  

xො = xL		 , yො = yL		 , aො = aL , b෠ = bL , P෡ = PL2ρ݂2݂ߙ , ෝ߱ = ߱L2݂ߙ , ොݑ = ݂ߙLݑ , ොݒ = ݂ߙLݒ 		, ෠߰ = ݂ߙ߰ 		, Ra = gβሺTh − TcሻL3ߥ	݂ߙ , Da = L2ܭ , Ra∗ = Ra.Da , Pr = ݂ߙߥ , T෡ = T − TcTh − Tc			 

ෝ߱ − Da. ∇෡2 ෝ߱ = Ra∗ ∂T෡∂xො + F.√DaPr ቊݑො ො|∂yොܞ|∂ − ොݒ ො|∂xොܞ|∂ ቋ − F.√Da. ො|Prܞ| ෝ߱ − DaPr. ∅2 ൫ܞො	. ∇෡൯ ෝ߱		 

T෡ = 1	, ෠߰ = 0, ොݑ = 0, ොݒ = 0, ෝ߱ = − ∂2 ෠߰∂nො2  

T෡ = 0			, ෠߰ = 0 , ොݑ = 0, ොݒ = 0, ෝ߱ = −∂2 ෠߰∂nො2  

߲T෡߲nො = 0			, ෠߰ = 0 , ොݑ = 0, ොݒ = 0, ෝ߱ = − ∂2 ෠߰∂nො2  

߲߲nො = ඨ൬ ߲߲xො൰2 + ൬ ߲߲yො൰2  
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A non-orthogonal curvilinear coordinate system is adopted, in order to treat the irregular boundaries of the 
studied elliptical annulus. Consequently, transformations from the physical regime, which is Cartesian, to a 
computational regime of ሺߦ, ߦ ሻ coordinates are performed by assumingߟ = ,ሺxොߦ yොሻ and ߟ = ,ሺxොߟ yොሻ. 
The grid of this study, was generated by assuming elliptic Poisson’s equations of a control method adopted by 
Hoffmann and Chiang (2000).The following partial differential equations were solved to obtain the desired grid: ε൫xොஞஞ + Φxොஞ൯ − 2δxොஞ஗ + γ൫xො஗஗ + Ψxො஗൯ = 0			                  (22) ε൫yොஞஞ + Φyොஞ൯ − 2δyොஞ஗ + γ൫yො஗஗ + Ψyො஗൯ = 0			                  (23) 

Where Ψ and Φ are respectively defined as: 

(24) 

(25) 

Suitable clustering functions were used for raising the grid resolution in some places inside the studied region, 
where the physical variables are of highly stepper gradient (Petrovic & Stupar, 1996). Figure 2 illustrates the 
resulted grid. 

 

Figure 2. Schematic sketch of the computational grid generated by Poisson’s elliptic equation 

The local heat transfer at the inner and outer surfaces are represented by the local Nusselt number. And the latter 
is expressed in computational regime as the following (Zhu et al., 2004): 

(26) 

The average Nuselt number is then determined by integrating the local Nusselt number along the surface of the 
inner or outer cylinder, taking in consideration the elimination of the adiabatic obstacles’ bases from calculations. 

3. Numerical Procedure  

After the governing differential equations, with the appropriate boundary conditions, had been transformed to the 
computational regimeሺߦ,  ሻ, they were approximated utilizing finite differences techniques of second orderߟ
truncation error. The approximated equations were solved numerically by using ADI with under relaxation 
method. The relaxation factor depended on the geometric variables. So, it had different values, each is 
determined by trial and error. However, the optimal under relaxation factor in all cases was less than unity. 

The independence of the numerical results from the grid size was also verified by trial and error. (49×200) was 
the chosen size, with which, the energy balance was, at worst, preserved to less than 1.6% in all calculations. 

The convergence criterion, adopted in this study, was defined as follows: ቤΘதାଵ − ΘதΘதାଵ ቤ 	൑ 10ି଺ 

Where Θ is any local dependent variable and τ is the number of the last iteration. On the other hand, the 

Ψ = −xොߟߟ xොߟ + yොߟߟ yොߟxොߟ 2 + yොߟ 2 ቤߦ=constant  

Φ = −xොߦߦxොߦ + yොߦߦ yොߦxොߦ 2 + yොߦ 2 ቤߟ=constant  

Nu = −√γܬ ቆ߲T෡߲ߟቇ  
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maximum number of iterations depended on the values of the relaxation factor. The deeper the latter, the more 
the former needed to verify the error set. It is worth to mention that Matlab programming language was utilized 
to construct the computer code which generated the numerical results. 

4. Code Validation 

In order to validate the code, several previous works should be accommodated by resetting the input variables of 
the geometry and porous medium. Figure 3 shows the streamlines and isotherms obtained by the present study in 
compare with those of Braga and de Lemos (2006), for ሺDa = 3 × 10ି଻, ∅ = 0.2, Ra∗ = 500	&	R = 2ሻ.  

 

 
Figure 3. Streamlines and isotherms’ comparison of the present study (to the right) and Braga-do Lemos, (2006) 

(to the left) for ሺDa = 3 × 10ି଻ሻ	, ሺ∅ = 0.2ሻ	, ሺRa∗ = 500ሻ	and	ሺR = 2ሻ 
The results of the average Nusselt number, obtained by the code of the present study, were also validated for a 
range of modified Rayleigh number. So, Figure 4 shows a comparison between the results of the present study 
and those experimentally and theoretically obtained by some previous works. Regarding the presence of the 
obstacles inside porous annuli, no comparable study is available up to the authors’ knowledge. 

 

Figure 4. Average Nusselt number versus modified Rayleigh number forሺDa = 3 × 10ି଻ሻ	, ሺ∅ = 0.2ሻ	and	ሺR =2ሻ. (a): Present work, (b): Experimental (Caltagirone, 1976), (c): Numerical (Caltagirone, 1976), (d): Unicellular 
flow (Charrier-Mojtabi et. al., 1991) and (e): Laminar model (Braga-de Lemos, 2006) 

Performing the above comparisons indicated a good agreement with the previous works and ensured that the 
constructed code is reliable enoughto solve the problem of the present work. 
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5. Results and Discussion 

For the purpose of simplifying the presentation of geometric cases, a special symbolic system is adopted in this 
study. For example, (0.67-PI-90) means that the twin obstacles are of length ሺ݈ =  ሻ, and they are fixed onݐ	0.66
the surface of the inner cylinder at (ߠ =90º). Within this code, (PI) would be replaced by (PO), if the twin 
obstacles were fixed on the outer cylinder. However, this study examines the influence of the obstacles’ existence 
by assuming three angular positions (60º, 90º and 120º), two radial positions (PI and PO) and three lengths (0.33, 
0.5 and 0.66). 

The influence of modified Rayleigh number in porous annuli has already been investigated in details by many 
authors (e.g.: Caltagirone, 1976, Charrier-Mojtabi, 1991, Mota & Saatdjian, 1995, 1999, 2000; Kaviany, 1986). So, 
in order to focus on the obstacles effect, the results discussed here are obtained at a single modified Rayleigh 
number of 500 and a single hydraulic radius ratio of 2:1. The combined effect of Rayleigh number, radius ratio 
and the obstacles would be all examined in other future studies. Darcy number, Prandtl number and porosity are 
also fixed for the same reason. They respectively are: (10ିସ, 0.71 and 0.9). 

The modified Rayleigh number 500 is high enough for the convective effects and the cellular flow pattern to be 
clear. Moreover, the installation of the obstacles is more needed and applicable at such a high Rayleigh number. 
Figure 5 shows a tri-cellular flow pattern occurring at ሺRa∗ = 500ሻ and ሺR = 2ሻ. From this figure one can 
notice that the angular position 90୭ is close to the center of the major convective cell where the maximum 
amount of stream function is. As so as, the direction of the flow, is almost normal to the obstacles, whether it is 
applied there. On another hand, the position 120୭ is occupied by the meeting boundaries of two convection 
cells. Besides that, the direction of the flow there, is tangential to the obstacles. These two different positions 
were chosen by the authors to be occupied by their twin obstacles for the recently aforementioned reasons. In 
addition to the positions 90º and 120º, the position 60º was also studied in order to examine how the existence of 
the obstacles in the lower part of the model does affect the flow pattern and hence the heat transfer rate. Based on 
what was foregoing, the following sections covers all the mentioned cases. 

 

 

Figure 5. Streamlines (left) and isotherms (right) for Ra∗ = 500 and R = 2, tri-cellular flow pattern without 
obstacles. It should be noticed that the clockwise flow direction has been negatively signed and vice versa 

 
a. The angular position 60º 

The aim of applying the obstacles in such a position is to confine and stagnate some of fluid under the inner 
cylinder and eliminate the convection currents there. The three length cases of PI-60 had quite performed that 
aim. The isotherms in Figures 6 (a, b and c) ensures that the heat almost conductively transfers in the lower part 
of the model. The other radial position’s cases (PO-60), respectively shown in Figures 6 (d, e and f), hadn’t do 
the same, but they just distorted the streamlines and slightly the cases of lengths and radial positions had already 
changed the flow pattern from tri-cellular to bi-cellular obstructed the major convection cells. On another hand, 
all. 

Table 1 shows that the average Nusselt number had decreased by considerable and approximately equal rates. 
Whereas the decrease in the maximum stream function was clearly different between the two radial positions (PI 
and PO). All these observations lead to the conclusion that the presence of the obstacles in the lower part of the 
model reduces the heat transfer significantly by reducing the number of convection cells, not necessarily by 
obstructing the fluid or by confining it there. 
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Table 1. Percentage of variation in the average Nusselt number and the maximum stream function 

  ݈ = 0.33 ݈ = 0.50 ݈ = 0.66 
  %ሺ∆ܰݑതതതതሻ %ሺ∆߰௠௔௫ሻ %ሺ∆ܰݑതതതതሻ %ሺ∆߰௠௔௫ሻ %ሺ∆ܰݑതതതതሻ %ሺ∆߰௠௔௫ሻ45௢  

PI -08.20 -5.73 -08.12 -5.38 -08.07 -5.15 

PO -08.71 -2.8 -11.04 -2.27 -07.94 -1.85 60௢ 
PI -08.90 -8.62 -09.18 -7.93 -09.16 -6.96 

PO -09.93 -3.03 -08.43 -2.41 -08.50 -1.55 90௢ 
PI -18.26 -13.51 -16.37 -9.27 -14.44 -4.59 

PO -14.42 -4.36 -12.34 -2.78 -11.33 -1.84 120௢ 
PI +15.66 -11.53 +12.37 -11.44 +07.98 -12.14 

PO -01.29 -8.89 +05.76 -8.46 +03.55 -11.54 145௢  
PI -01.00 -7.85 -01.47 -8.11 -01.58 -7.37 

PO -06.06 -1.7 -06.27 -1.65 -02.81 -6.14 ܰݑതതതത|௪௜௧௛௢௨௧	௢௕௦௧௔௖௟௘௦ = 3.23 ߰௠௔௫|௪௜௧௛௢௨௧	௢௕௦௧௔௖௟௘௦ = 24.8 
 
b. The angular position 90º 

The presence of the obstacles according to case (0.33-PI-90) causes obstructing to the flow in a spot where the 
velocity was relatively high. Moreover, presence of the obstacles in that position, with any length, causes 
lengthening to the flow path by diverting it from the alignment of the hot cylinder, in that spot, to the alignment 
of the adiabatic obstacle’s surface (see Figures 6 (g, h and i)). As a result, the decrease in the average Nusselt 
number is larger than the decrease in the maximum stream function, as it is clearly shown by Table 1. On another 
hand, the long (or moderate) obstacles, applied in the position (PI-90), partially separates the annulus into upper 
active part and lower inactive one. This separation causes a short circuit to the convection currents in the upper 
part. Consequently, such separation badly affects the insulation efficiency. This conclusion was supported by the 
results of Bejan (1983) exactly which concerning with full separation. Furthermore, Table 1 in the present study 
shows that the shorter the obstacles, the less the average Nusselt number in case of (PI-90). Summarily, the 
above conclusions may indicate an equilibrium, in which the effect of the obstructing and the effect of separation 
are on contrast.  

Regarding the position (PO-90), the short obstacles, installed on the outer cylinder, obstructs the flow, but 
slightly less than what caused by installation in position (PI-90). The reason would be explained as follows: the 
side (major) convection cell expands along a curved enclosure. Although the installation of a short obstacle in 
position (PO-90) slightly chokes the flow, it reduces the severity of enclosure curvature. On contrast, installation 
in position (PI-90) increases the severity of enclosure curvature where the side convection cell expands along. 
On the other hand, installing long (or moderate) obstacles leads to a partial separation for the studied model into 
upper and lower parts. Figures 6 (j, k and l) show the posed cases in terms of isotherms and streamlines. 

c. The angular position	120º 

The position (PI-120) is considered the worst for the goal of reducing heat transfer. Table 1 shows an increase in 
Nusselt number up to 15.66% for some cases, despite of the drop in the maximum stream function. In order to 
understand the reason, the few following lines should be explicated firstly. The flow, within the small convection 
cells in the upper part, is subject to two opposite effects: the first is the contact with the major cell in the lower 
part, which directs the rotation of the adjacent upper cell to be negative. And this is actually what is taking place 
in case of no obstacle installed. The second is the effect of the geometry of the space including the upper 
convection cells. By looking at Figure 5, one can conclude that, if the moderate convection cell was left to spin 
under only the effect of geometry, it would   have already taken the positive direction. This contrary in effect 
significantly reduces the amount of fluid flow in the upper part. Therefore, the installation of the obstacles, in the 
position (PI-120), increases the amount of flow in the upper part by creating small secondary cell at the obstacle 
head and eliminating the influence of contact with the major cell in thelower part. Consequently, this installation 
allows the upper main cell to spin freely in the positive direction under only the influence of the geometry of the 
space. 
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Figure 6. Streamlines (to the left) and isotherms (to the right) for various cases of angular position, radial 
position and length. ሺDa = 10ିସሻ	, ሺ∅ = 0.9ሻ	, ሺRa∗ = 500ሻ	and	ሺR = 2ሻ 

 

All the foregoing above, leads to understand that the reduction in the maximum stream function, due to the 
presence of the obstacles, indicates reduction in the amount of fluid flow within the major cell. And this is 
regardless of the increase in the amount of the upper part flow, which is the actual reason of the increase in the 

 ૟૙ܗ ૢ૙ܗ ૚૛૙ܗ 

0.33-PI 

a g m 

0.50-PI 

b h n 

0.66-PI 

c i o 

0.33-PO 

d j p 

0.50-PO 

e k q 

0.66-PO 

f l r 
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overall average Nusselt number (see Table 1). 

No fundamental difference exists between the two radial positions (PI-120 and PO-120) except the case 
(0.33-PO-120). Since, this case didn’t cause enough separation. But on contrary, it caused a creation of a small 
additional convection cell of a significant effect on the major convection cell in the lower part. Table 1 shows 
that this case is unpractical to carry out. 

6. The Conclusions 

A non-orthogonal curvilinear coordinate system is adopted, in order to treat the presence of the obstacles inside 
two-dimensional elliptical annulus. Consequently, an efficient code of high accuracy has been developed to solve 
the non-Darcian-Boussinesq equation, governing the flow inside porous media. The code had already been 
validated then the results were discussed. Hereafter, several conclusions are listed below: 

1) The presence of the obstacles in the lower part of the model reduces the heat losses significantly by changing 
the flow pattern and reducing the number of convection cells, not necessarily by obstructing the fluid or by 
confining it there. 

2) When the obstacles is installed in the angular position 90୭, the shorter the obstacles, the less the overall heat 
losses. However, the installing at the inner cylinder, in such an angular position, reduces the heat losses more 
than the reduction caused in case of installing the obstacles at the outer cylinder. 

3) The best position for the obstacles to be installed in, with respect to the goal of reducing heat losses, is 90୭. 
Whereas the worst is 120º. So, in such a problem, one can preserve 18.26	% of the lost energy, while 
another may lose 15.66% of it.  
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