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Abstract 
A dynamical Bayesian significance testing method is proposed to examine information on performance variation 
of rolling bearings for space applications under the condition of an unknown probability distribution and trend in 
advance. Sub-series of time series of rolling bearing performance are obtained via a regularly sampling, 
probability density functions of sub-series are acquired with bootstrap and maximum entropy theory, a 
referenced sequence from sub-series is found by minimum variance principle, posterior probability density 
function is established according to Bayesian theory, and mutation probability is defined in the light of fuzzy set 
theory. At the given significance level, dynamical Bayesian significance testing for information on performance 
variation of rolling bearings is put into effect with the help of mutation probability. Experimental investigation 
presents that the method proposed can effectively detect variation information of rolling bearing performance 
with unknown probability distributions and trends. 
Keywords: rolling bearing, space applications, Bayesian significance testing, information analysis, performance 
variation 

1. Introducation 
With the devolopment of the fields of aeronautics and astronautics, bullet trains, and alternative energy, research 
of rolling bearing performance has attracted much attention, with many new findings (Randall & Antoni, 2011; 
Oguma, 2011; Xia, 2012; Mukhopadhyay & Bhattacharya, 2011; Sinha et al., 2010). At present, studies of 
rolling bearing performance mainly rely on a known probability distribution and trend in advance. For example, 
the probability distribution of performance is considered as a normal distribution, a Weibull distribution, or a 
Poisson distribution; and the trend of performance is regarded as a given potential function and kernel function 
and wavelet basis function, and a piecewise linearized function. However, many performance indexes are 
required for rolling bearings, different performance indexes for different applications (Shimizu, 2012; Siegel 
David et al., 2012; Yasufuku et al., 2010; Soylemezoglu et al., 2010; Arakere et al., 2010). So far, failure 
probability distributions and degradation trends of much performance, such as friction torque, vibration, and 
running accuracy, still are unknown. Particularly, degradation of rolling bearing performance belongs to a 
non-stationary stochastic process characterized by nonlinear dynamics, which goes through three phases, early 
degradation phase, gradual degradation phase, and rapid degradation phase, along with a change in failure 
probability distributions and trends of performance (Xia, 2012a & 2012b; Sinou, 2009; Ahmad et al., 2009; Xia 
& Chen, 2013). Thus, the rolling bearing performance analysis theory relied on prior information of probability 
distributions and trends encounters serious challenges, resulting in this hard problem to solve. For this end, under 
the condition of unknown probability distributions and trends in advance, a method for dynamical Bayesian 
significance testing is proposed to examine information on rolling bearing performance variation, for the early 
detection of the hidden danger of failure of rolling bearing performance, thus avoiding serious accident. 
Experimental investigation on vibration acceleration of rolling bearings for space applications is conducted for 
corroboration of the method. 

2. Mathematical Model 
Suppose performance data of a rolling bearing in service are sampled R times and R time series of performance 
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data are obtained. Let Xr stand for the rth time series that is given by 

 (1), (2),..., ( ),..., ( ) ; 1,2,...,r r r r rX x x x h x H r R                       (1) 

where xr (h) is the hth datum in Xr; h is a sequence number, h = 1, 2, …, H; and H is the number of data in Xr. 

The rth time series Xr is divided into D sub-series and the dth sub-series is given by 

 (1), (2),..., ( ),..., ( ) ; 1,2,...,rd rd rd rd rdX x x x i x I d D                      (2) 

where xrd (i) stands for the ith datum in Xrd; i for a sequence number, I = 1, 2, …, I; and I for the number of data, 
which is expressed as 

D

H
I                                           (3) 

According to bootstrap, an equiprobable resampling with replacement from Xrd is implemented by following 
steps: 

(1) Let the constant B be equal to 500000, and let the variable b take a value 1, where B is the number of the 
resampling samples and b is the bth equiprobable resampling. 

(2) Let one datum be drawn by an equiprobable resampling with replacement from Xrd. 

(3) Let the step (2) be repeated I times, so that I data can be sampled. 

(4) Calculate the mean yrd(b) of I data, which is considered as one of the data in the generated data series Yrd. 

(5) Add 1 to b. 

(6) If b>B, go to the step (7); otherwise go to the step (2). 

(7) Let the generated data series be of size B = 500000, so that many generated data are obtained. 

Via steps (1) to (7), the generated data series Yrd is gained, as follows: 

 )(),...,(),...,2(),1( BxbyyyY rdrdrdrdrd                          (4) 

with 
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where θb(i) is the ith data obtained and yrd (b) is the mean of I data in the bth sampling. 

The origin moment of Xrd is as follows: 

rd
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B
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 


                         (5’) 

where Mrd is the highest order of the origin moments and Mrdm is the mth order origin moment. 

Assume x is a random variable for describing rolling bearing performance data. According to maximum entropy 
theory, a probability density function frd(x) is obtained by 


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where crdk is the kth Lagrangian multiplier about Xrd and k = 0,1,…, Mrd. 

In Equation (6), the Lagrangian multiplier crdk (k = 1,2,…, Mrd) can be solved by 
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The first Lagrangian multiplier crd0 can be obtained by 
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where Rrd is the integrating range of x about Xrd. 

Let r = 1 in Equation (6), then the probability density function of the dth sub-series X1d in the first time series X1 
is obtained as 
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For the first time series X1, let X1d be both a prior sample and a current sample and f1d(x) be both a prior 
distribution and a current sample distribution. According to Bayesian statistics, the posterior probability density 
function of X1d is obtained as 


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According to statistics, the mathematical expectation E1d of X1d is defined as 


dR

dd xxxE

1

d)(11                                     (11) 

and the variance D1d of X1d is defined as 

xxExD d
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According to the minimum variance principle, the minimum variance D1min is given by 

),...,,...,,min( 112,11,1min1 Dd DDDDD                            (13) 

For the first data series, suppose the sub-series with the minimum variance D1min is marked by X1min and the 
posterior probability density function of X1min is marked by φ1min(x). Define X1min and f1min(x) as the referenced 
sequence and the referenced distribution, respectively. 

For the rth time series (r = 2, 3, …, R), let Xrd and frd(x) be the current sample and current sample distribution, 
respectively, then according to Bayesian statistics the posterior probability density function φrd(x) of Xrd is as 
follows: 
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where R0 is the integrating range of x. 

According to statistics, the mathematical expectation Erd of Xrd is defined as 

RrxxxE
R
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and the variance Drd is defined as 
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Variance ratio of Xrd to X1min is defined as  
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In the light of concept of intersection of fuzzy sets, a mutation probability α1,rd is defined as 

))()((1 min1,1 xxA rdrd                              (18) 

where A(φrd(x)∩φ1min(x)) stands for the area of the intersection of φrd(x) and φ1min(x). 

The mutation probability α1,rd can take values in [0,1]. Let significance level be α=0.1, then significance testing 
for performance variation of rolling bearings can be conducted.  

If 

 rd,1                                     (19) 

then variation of Xrd is of significance; otherwise, variation of Xrd is of no significance. 

3. Case Studies 
This case involves with experiment on vibration acceleration of a rolling bearing for space applications. The 
rolling bearing that was installed on a specialized performance rig worked for 46 days (time interval: 8 
November 2010 to 23 December 2010, running conditions of axial load of 49N and of rotational speed of 1000 
r/min) and test data, in dB, were sampled 10 times (viz., R = 10), one time every 5 days and 4000 data (viz., H = 
4000) every time, as shown in Figures 1 and 2. 
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Figure 1. Experimental data of time series from X1 to X5 
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Figure 2. Experimental data of time series from X6 to X10 

 
It is easy to see from Figures 1 and 2 that as time series, information of rolling bearing vibration acceleration 
presents a complex and variational status, with an unknown probability distribution and trend. 

From Figures 1 and 2, every 400 data are considered as a sub-series, viz., I = 400, and 4000 data in the first 
sub-series X1 are regarded as prior information that includes ten sub-series, X1,1, X1,2, …, X1d, …, X1,10 (including 
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400 data in every sub-series). 

Using Equations (9) to (13), the mathematical expectation E1d and the variance D1d of X1d are calculated for 
selection of the referenced sequence X1min and results are listed in Table 1. 

 

Table 1. Selection of referenced sequence 

Prior sample 
(8 November 2010) 

Current sample 
(8 November 2010) 

Mathematical 
expectation 

Variance×10-5 

The first sub-series The first sub-series -0.003 5.8993 

The second sub-series The second sub-series -0.0045 16.294 

The third sub-series The third sub-series -0.0056 3.7922 

The fourth sub-series The fourth sub-series -0.0054 1.4836 

The fifth sub-series The fifth sub-series -0.0048 2.4824 

The sixth sub-series The sixth sub-series -0.0012 8.7588 

The seventh sub-series The seventh sub-series -0.0070 9.4744 

The eighth sub-series The eighth sub-series -0.0024 43.029 

The ninth sub-series The ninth sub-series 0.0005 31.533 

The tenth sub-series The tenth sub-series -0.0035 22.149 

 
According to Table 1, the fourth sub-series, viz., X1min = X1,4, is selected as the referenced sequence due to its 
minimum variance D1,4 = D1min. Based on this, with the help of Equations (15), (17), and (18), the mathematical 
expectation, the variance ratio, and the mutation probability are obtained as shown in Figures (3), (4), and (5), 
respectively. 
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Figure 3. Mathematical expectation 
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Figure 4. Variance ratio 
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Figure 5. Mutation probability 

 
From Figure 5, overall, from beginning of the second sub-series (corresponding to abscissa values 1 to 10 in 
Figure 5) to end of the third sub-series (corresponding to abscissa values 11 to 20 in Figure 5), the mutation 
probability is in a rising trend; from beginning of the fourth sub-series (corresponding to abscissa values 21 to 30 
in Figure 5) to end of the ninth sub-series (corresponding to abscissa values 71 to 80 in Figure 5), the mutation 
probability that takes values in the range from 0.03 to 0.32 is in a large fluctuation; and from beginning of the 
tenth sub-series (corresponding to abscissa values 80 to 90 in Figure 5), the mutation probability that takes 
values about 0.1 is in a new stability. As a result, variation information of rolling bearing vibration acceleration is 
tested as follows: 

(1) From 8 November to 18 November, vibration performance variation becomes gradually significant, showing 
an early degradation phase; 

(2) From 23 November to 18 December, vibration performance variation is complex and variable, alternating 
significance and no significance and revealing a transitional period from early degradation phase to gradual 
degradation phase; 

(3) On 23 December, vibration performance variation is not significant, meaning a start of gradual degradation 
phase. 

It can be seen from the above that the method proposed is able to test information on rolling bearing performance 
variation. 

4. Conclusions 

The dynamical Bayesian significance testing method, under the condition of unknown probability distributions 
and trends in advance, can examine information on rolling bearing performance variation for the early detection 
of the hidden danger of failure of rolling bearing performance, thus avoiding serious accident. Experimental 
investigation on vibration acceleration of the rolling bearing for space applications shows correctness of the 
method. 
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