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Abstract 
This paper presents a probabilistic design approach for the Gerber bending fatigue failure rule using 
sensitivity-based analysis. The design model parameters are considered as random variables that are 
characterized by mean values and coefficients of variation (covs). The coefficient of variation of a design 
parameter is obtained by using first order Taylor series expansion for strength and stress in a stress-based fatigue 
design. A reliability factor is determined based on the coefficients of variation and a failure probability. The 
reliability factor is then used for design sizing and analysis. 

Probabilistic design allows a quantification of risk that is not possible with deterministic design approaches. This 
risk quantification can help to avoid over- or under-design problems while ensuring that safety and quality levels 
are economically achieved. Over design requires more resources than necessary and leads to costly products. 
Avoiding over-design helps to conserve product materials and reduce manufacturing resources, machining 
accuracy, quality control, and processing. Under-designed products are prone to failures, making the products 
unsafe and unreliable. This increases the risks of product liability lawsuits, customer dissatisfaction, and even 
accidents. 

This study shows a 51% reduction in component size without compromising desired reliability and hence a 
possible 51% reduction in component mass and cost. Therefore, significant savings in product cost can be 
obtained through probabilistic design. Probabilistic design seems to be the most practical approach in product 
design due to the inherent variability associated with service loads, material properties, geometrical attributes, 
and mathematical design models. It is becoming the preferred design method because over- or under-design can 
be avoided while still ensuring the safety of a product. 

Keywords: fatigue, failure, lognormal, variate, reliability, design, factor, safety 

1. Introduction 
In today’s market environment, quality is taken for granted. A quality product is associated with rare unexpected 
and unpleasant events which result from uncertainties in design. Customers are usually satisfied if a product 
performs as expected or better (“Understanding Probabilistic Design”). Designing a quality product is therefore 
of paramount importance for product market success. In traditional or deterministic design, safety or design 
factors are usually subjectively assigned in product design so as to assure reliability. But this method of design 
can sometimes be crude. In fact, the safety factor method does not give insight about individual variation or the 
actual margin of safety in a design (Koch, 2002). Because of the difficulty of relating safety factor and product 
safety quantitatively, some prefer the term design factor to safety factor (Mott, 2008). 

According to Kalpakjian and Schmid (2001), surveys indicate that many products in the past have been 
overdesigned. Over design can result from uncertainty in design calculations, or from concerns about product 
safety. For instance in order to avoid user injuries or death and product liability lawsuits, a larger then necessary 
safety factor may be used in a design. Also, many designs are based on experience and intuition, rather than 
thorough analysis and experimentation which may result in over- or under-design. Overdesign can add 
significantly to the cost of a product making it uneconomical because components or products become too bulky, 
are made with unwarranted manufacturing precision and, or are made with unwarranted material quality. 
However, under-design increases risk of failure and product liability issues. Probabilistic design allows product 
design to be safe and reliable while avoiding costly over-design. It conserves materials and manufacturing 
resources in machining processes, accuracy, and quality control.  
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Probabilistic design deals with the consideration of the effects of random variation on design model parameters. 
Very few real engineering problems are void of uncertainty because variation is inherent in material properties, 
loading conditions, geometric properties, simulation models, manufacturing precision, and actual product usage 
(Koch, 2002). Specifically, in machine and structural design, random variation is known in structural capability 
such as yield strength, fatigue strength, and ultimate strength. Likewise loads on members are subject to random 
variation. For instance, static loads are considered fixed or deterministic in values while dynamic loads are 
known to vary in magnitude and or with time. Manufacturing processes are associated with variability, so 
tolerances are specified on component dimensions. In general, variability in stress-based design parameters can 
be grouped into two: strength variability and stress variability. Stress variability has two components of load 
variability and geometry variability. It is not physically possible or financially feasible to eliminate variation of 
design parameters. This is due to the fact that the reduction of variability is associated with higher costs either 
through better and more precise manufacturing methods and processes or increased efforts in quality control. 

Due to known variation in many design model parameters, a statistical consideration of load, stresses, 
deformations, etc. is a logical expectation in engineering design. This is because statistical methods allow 
quantitative descriptions of phenomena that show consistent pattern of variability (Mischke, 1996). Accepting 
variability and limiting it seems to be a more practical approach in design as it makes production more 
cost-effective and products more affordable (“Understanding Probabilistic Design”). Probabilistic design treats 
design model parameters as random variables and allows an assessment of risk or confidence in a design and can 
quantify the amount of over- or under-design (Cullimore & Tsuyuki, 2002). Random variable analysis shows that 
mean values of functional relationships are obtained by substituting mean values of the variates. Therefore, 
calculations of safety factor based on the quotient of minimum strength and maximum load or maximum stress 
are not appropriate when considering chance failure (Mischke, 1996). Using statistical methods, component or 
product safety can be quantitatively associated with a probability of failure. This approach has led to the concept 
of a reliability factor (Taguchi, 1992; Shigley & Mittchel, 1983). The reliability factor is evaluated using mean 
and standard deviation (or coefficient of variation) values in the appropriate mathematical design models. This is 
the basic conceptual difference between safety factor (a somewhat arbitrary number) and reliability factor which 
is expressed as a function of design parameter variability and a failure level.  

The use of probabilistic design methods requires some appropriate probability distribution (Johnson, 1980). It is 
known that products of variates from any distribution tend asymptotically to lognormal (Mischke, 1996). Also, 
products, quotients, and exponents of lognormal variates are also lognormals. Since design formulas generally 
contain products and quotients of design parameters or sum of terms of products and quotients of the design 
parameters, the lognormal distribution is a good candidate for probabilistic design applications. It has been 
suggested that the lognormal distribution is more accurate than the normal distribution in situations of high 
reliability (Reshetov, Ivanov, & Fadeev, 1980). Also, lognormal distribution for design parameters is reasonable 
because of the control of material properties and the positive skewness of known load distribution curves (JJS). 
In particular, fatigue failure data exhibit lognormal distribution in an approximate sense (Shigley & Mischke, 
1996). Generally, computation of sample mean and standard deviation allows the estimation of probability of 
failure (Collins, Busby, & Staab, 2010). 

The numerical value of reliability factor should take both the consequence of failure and the nature of product 
usage into account. Product usage in service is not easy to predict at the design phase (Norton, 2000). For 
instance, the user may not follow operational guidelines; service environment may be different from that 
assumed during design, and in fact, a host of variables completely outside the control of the designer come into 
play. Most often designers resort to the use of overload or service factors in estimating the maximum load 
expected in service (Collins, Busby, & Staab, 2010; Childs, 2004; Spotts, 1985; Juvinall, 1983). Generally, the 
variability of size dimensions is usually of a lesser degree compared to the variability in material properties or 
loads. Apparently, failure probability should be chosen to reflect the consequence of failure such as product 
damage or personnel injury (Collins, Busby, & Staab, 2010; Juvinall, 1983; Shigley & Mischke, 1996). For 
instance, a cheap and easily replaced component may be designed for low reliability, say 90%. However, if a 
component failure would result in severe product damage or possible personnel injury, a low failure probability 
is desirable. Now if a failure can result in fatality, then very high reliability must the required. Ashby and Jones 
(1987) says a failure probability of 10-1 may be acceptable for ceramic tool because it is easily replaced but one 
may aim at a value of 10-6 where failure may result in injury and probably 10-8 when one component failure 
could be fatal. The aerospace industry specifies a reliability of “five-nines” (i.e., 0.99999 or a failure probability 
of 10-5) in many cases, while the standard reliability of rolling element bearings is 90% (Collins, Busby, & Staab, 
2010).   
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The most problematic design situation is dynamic where machine and structural members are loaded by forces 
which may vary in magnitude and or point of application. This leads to variation in the stress levels on members 
that can cause fatigue failure. Fatigue failure normally takes the form of brittle fracture at stresses well below the 
static strength of the materials (Hidgon, Osheen, Stiles, & Weesa; 1967). About 80% to 90% of the failures of 
machine and structural members result from fatigue (Kravchenko, 1964; Sachs, 1999). Because of the 
predominance of fatigue failure, the objective of this study is to develop probabilistic design model for the 
traditional Gerber bending fatigue model by considering design parameters as random variables. The model is a 
good candidate for probabilistic application because it captures experimental data on an average performance 
(Norton, 2000; Shigley & Mischke, 1996) basis and thus can be associated with a 50% probability. There are at 
least three approaches in probabilistic designs; namely Monte Carlo simulation, design of experiments, and 
sensitivity analysis (Koch, 2002). These methods help us estimate the means and standard deviations of design 
parameters necessary for probabilistic designs. This study uses the sensitivity analysis approach which is 
considered appropriate and cost effective in component design for structural and mechanical applications. If 
reliable data values of means and standard deviations or coefficients of variation of design parameters are 
available in fatigue design situation, a definite reliability goal can be met through a reliability factor using the 
lognormal probability distribution. 

2. Lognormal Reliability Model 
In the physical domain, S is the random variable for strength and σ is the random variable for stress.  By 
definition, the reliability factor in a design is taken as: 

S
zn






                                     (1) 

Assuming that S and σ have lognormal distributions, respectively, then random variables x and y can be defined 
as: 

( )x In S                                       (2a) 

( )y In                                        (2b) 

The means and standard deviations of x and y are given in Equations 3 and 4, (“Lognormal Distribution”) 
respectively: 

2( ) 0.5 (1 )x S sIn In                                    (3a) 

2( ) 0.5 (1 )y In In                                     (3b) 

2(1 )x Ss In                                      (4a) 

2(1 )ys In                                      (4b) 

When a component is loaded, an interaction between strength variable x and the stress variable y occurs as 
depicted in Figure 1. The shaded portion in Figure 1 represents the region where the imposed stress is likely to 
be greater than the strength of the component. Hence this region represents the zone of possible failure.  

 

 
Figure 1. Load-strength interaction 
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The failure zone is defined by the probability density function q, the difference between random variables x and 
y. That is: 

q x y                                        (5) 

The parameters (mean and standard deviation) of the interaction random variable, q in Figure1 are: 
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                             (6a) 

 ( )( )2 2
q Ss In 1 v 1 v                                 (6b) 

Figure 2a depicts the distribution of q while Figure 2b depicts the corresponding unit normal variate distribution 
of q. In Figure 2a, any normal variate q on the left of the mean μq can be obtained using the unit normal variate z. 

 
 
 

 

 

 

 

 

  

a) Failure distribution curve             b) Unit normal distribution 

Figure 2. Failure random variable 

 

The failure zone is the region of q ≤ 0. Hence failure is predicted when: 

q qq zs 0                                      (7a) 
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                          (7b) 

The failure probability associated with the unit normal variate is represented by the area under the unit normal 
distribution curve (shaded in Figure 2b). The corresponding reliability is obtained by subtracting the failure 
probability from unity. That is: 

( ) ( )zR 1 z z                                    (8a) 

 
2
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  
         

                       (8b) 

Equation 8a gives the reliability for the unit normal variate z, with the value of ( )z   or ( )z  read from an 
appropriate table. Equation 8b gives the reliability factor for a desired reliability level defined by z. If a desired 
reliability or failure probability is specified, then z is known and the necessary reliability factor nz for achieving 
this reliability can be obtained. Therefore, if the variability of the significant factors in a design model can be 
estimated with reasonable accuracy, it is possible to design to a reliability level through a reliability factor. 
According to Wang, Kim and Kim (2006), it is common to use the unit normal variate (Equation 7b) for failure 
probability assessment because probability values (Equation 8a) can change by several orders of magnitude over 
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small changes in the unit normal variate. The task in using the reliability model of Equation 8b is to develop 
expressions for vS and vσ for specific design models. The model application is not limited to stress-based design; 
it can be used for any serviceability criterion of interest such as lateral stability, transverse deflection, torsional 
rigidity, critical speed, etc. In the Appendix, expressions for vS and vσ for Gerber bending fatigue failure rule are 
developed. 

3. Gerber Bending Fatigue Model 
Figure 3 shows the Gerber bending fatigue design diagram. The stress state in bending fatigue loading is 
appraised from the maximum and minimum stress values imposed on the structural or machine member during 
one load cycle. The exact variation of the stress during the cycle does not seem to be particularly relevant 
(Kravchenko, 1964; Dieter, 1976). The damage from cyclic bending stress state is assessed on the basis of the 
mean and amplitude stresses. When a tensile mean stress is present during fatigue load cycle, the material fails at 
alternating stress levels lower than the fatigue strength. In Figure 3, the Gerber fatigue failure rule is represented 
by the Gerber curve ABC. The design space is divided by the line OB into two regions OAB called dynamic 
fatigue failure regime and OBC called static fatigue failure regime (Osakue, 2012; Osakue, Anetor, & Odetunde, 
2012). In region OAB, material failure results from the predominant influence of the alternating stress. In region 
OBC material failure results from the predominant influence of the mean stress. Line OB makes angle β with the 
horizontal line. The angle β is a function of the service fatigue and tensile strengths of materials (Osakue, 2012; 
Osakue, Anetor, & Odetunde, 2012): 

f
s

u

S

S
                                          (9a) 

tan 1.5t s                                       (9b) 

 

 

 

 

 

 

 

 

 

 

Figure 3. Bending fatigue design diagram 

 

Equations 9a and 9b depend on the service fatigue ratio ψs: the ratio of fatigue strength in service to ultimate 
tensile strength of materials. A design point is defined by the coordinates ( , )m ak   which has a load line that 
passes through the origin with a slope (Osakue, 2012) given by: 

k k Ma a
Mm m

 



                                     (10) 

If η is equal to or greater than the load line transition factor ηt, then the design point will be inside the region 
OAB in Figure 3 and dynamic fatigue failure regime applies. If η is less than ηt, the design point will be inside 
triangle OBC in Figure 3, and static fatigue failure regime applies.  

3.1 Dynamic Fatigue Failure Regime: t    

The design load capability in dynamic fatigue failure is determined by the service fatigue strength. If direct field 
measurements are made, vf is obtained from test results. However, laboratory fatigue tests on small polished 
specimens of the material of interest (Collins, Busby, & Staab, 2010) can be used to estimate field or service 
fatigue strength by making use of adjustment or correction factors. In such a case, the service fatigue strength 
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(Equation 11a) and coefficient of variation of the fatigue strength (Equation 11b) are estimated respectively as: 

/
f sz sr tm o fS C  C  C S                              (11a) 

1
2 2 2 2 2 2

S f su o sz sr tm                                    (11b) 

Based on the works of (Collins, Busby, & Staab, 2010; Osakue, 2012), σef for tradition Gerber rule is:  
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From the Appendix (Equation A10), the cov of σef is determined as: 

νσ  =  

1
2 2

2 2 2 2 2 2 2 2
2

2
9 ( 9 )
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               (13) 

During design sizing, the reliability factor is needed. Equation 13 is used to determine design model parameters 
variability and Equation 8b is used to evaluate the reliability factor for a target failure probability. The section 
modulus for a component can then be estimated as:  

2

K nz sFZ k M Mx a mS f




    
                         (14) 

Cross-sectional dimensions of the component section are determined for a rectangular beam as: 

 
1
36h Zx                                     (15a) 

h
b


                                     (15b) 

For a solid round bar, the diameter of the component is: 

1

332Zxd


 
 
 
  

                                   (16) 

In design analysis, the section moduli are calculated or selected from Tables. For simple cross-sectional shapes 
like rectangle or circle, Equation 17a and Equation 17b may be used respectively:  

1 2
6

Z bhx                                     (17a) 

3

32xZ d
                                    (17b) 

The induced nominal stresses at a point of maximum bending moments are then evaluated as: 
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Substituting Equation 18 in Equation 12, the reliability factor is determined as:  

f
z

ef

S
n


                                      (19) 

Equation 7b is used to determine the unit normal variate while Equation 8a is used to evaluate the reliability 
using the unit normal variate from Equation 7b by referring to appropriate table for ( )z . 

3.2 Static Fatigue Failure Regime: t     

The design load capability in static fatigue failure is determined by the service tensile strength. If direct field 
measurements are made, vμ is obtained from test results. But, if the tensile data available are from laboratory 
tests on small polished specimens, then like the service fatigue strength, the service tensile strength (Equation 
20a) and the coefficient of variation of the tensile strength (Equation 20b) are estimated respectively as: 

/
u sz sr tm uS C  C  C S                                  (20a) 

1
2 2 2 2 2

S u su sz sr tm                                        (20b) 

Based on the works of Osakue (2012), σef for traditional Gerber bending fatigue rule is:   
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From the Appendix (Equation A17), the cov of σef is: 

 
1

2 2
2 2 2 2 2 2 2 21 1

9 9
4 1F l h k F l h f
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               (22) 

As in the dynamic fatigue regime, the reliability factor is needed during design sizing. Equation 22 is used to 
determine design model parameters variability, Equation 8b is used to evaluate the reliability factor for a target 
failure probability. Then:  

aF z
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k MK n
Z M

S

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                                (23) 

Equations 15 and 16 are used for sectional dimensions and in design analysis; the stresses are evaluated using 
equations 17 and 18. Substituting Equation 18 in Equation 21, the reliability factor is determined as:  

u
z

ef

S
n


                                          (24) 

Equation 7b is used to determine the unit normal variate while equation 8a is used to evaluate the reliability 
using the unit normal variate by referring to appropriate table for ( )z .  

4. Some Applications of Models 
Two solutions are developed and three solutions are analyzed in this section. The design problem is a case of 
possible dynamic fatigue failure taken from Norton (2000). The first example is a design analysis of the solution 
provided in the reference from a probabilistic perspective based on the design model equations developed in this 
paper. The second and third examples are attempts to redesign the components of example 1 using probabilistic 
fatigue approach as presented in this paper. This example is used because it is described as a typical design 
problem (Norton, 2000).  

4.1 Example 1 

Figureure 4 shows one of two brackets attached to a machine frame. The brackets carry a combined fluctuating 
load varying from a minimum of 890 N to a maximum of 9,786 N (Norton, 2000); (data converted to SI Units by 
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author). The load is shared equally by the brackets; the maximum allowed lateral deflection is 0.51 mm for each 
bracket, and each should be designed for 109 load cycles. The load-time function is sinusoidal, maximum 
cantilever length is 152 mm, and the operating temperature is 50 oC. Trial dimensions are b = 51 mm, h = 25.4 
mm, H = 28.6 mm, r = 12.7 mm and l = 127 mm. The brackets will be machined to size from stocks. From 
Norton (2000), the value of kσ = 1.16 and Zx = 5463.45 mm3. The brackets are to be made from SAE 1040 steel 
with Su = 550 MPa and Sf = 150 MPa at 99.9% reliability. 

 

Figure 4. (Norton, 2000) 

 
4.1.1 Example 1 Solution 

The use of probability model in design requires the coefficients of variation of the design parameters. That is, 
variability of load, material properties, and geometric dimensions must be known for the benefit of probabilistic 
design to be realized. In house data on variability of design model parameters are the most reliable in 
probabilistic design. Most of the required variability information are probably available in current databases but 
are not processed or presented in the appropriate format. So it might take some effort in data gathering so that 
they are presented in mean and coefficient of variation format. For the example, Table 1 summarizes the 
coefficients of variation associated with the design parameters in the problems. Based on Table 1 and Equation 
11b, the effective strength coefficient of variation was evaluated to be 0.207. The expected 109 load cycles for 
the brackets is in the range of infinite-life fatigue regime. This simplifies the estimation of the service fatigue 
strength as shown in Norton (2000). At 50% reliability level the service fatigue strength is Sf = 200 MPa (Osakue, 
2012).  

Based on the dimensions b = 51 mm, h = 25.4 mm, H = 28.6 mm, r = 12.7 mm, a design analysis was performed 
in an Excel Spreedsheet using Equations 11, 12, 13, 17, 18, 19, 7b and 8a. Table 2 summarizes this analysis. 

 
Table 1. Coefficients of variation                                

Strength (COVs) Value  
Basic fatigue strength (Shigley & Mischke, 1996) 0.080 

Tensile strength (Shigley & Mischke, 1996) 0.050 

Basic fatigue ratio (Shigley & Mischke, 1996) 0.140 

Size*  0.001 

Surface finish (machined) (Shigley & Mischke, 1996) 0.120 

Temperature (Shigley & Mischke, 1996) 0.110 

Stress (COVs) Value  
Overload factor (Collins, Busby, & Staab, 2010). 0.050 

Length (Matthews, 2005)  0.030 

Depth (Shigley & Mischke, 1996) 0.001 

Stress conc. factor (Shigley & Mischke, 1996) 0.110 

Miscellaneous (Matthews, 2005) 0.050 

* Conservative estimate  
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Table 2. Deterministic solution 

Design Analysis 
Section Properties Value  
Major section modulus (mm3) 5463.5 

Minor section modulus (mm3) 11011 

Stress Concentration Factors   Value 
Bending stress con. factor 1.160 

Equivalent Loads  Value 

Minor section modulus factor 2.015 

Equivalent alternating moment (Nmm) 327640 

Equivalent mean moment (Nmm) 338938 

Effective Stress Value 
Equivalent alternating stress (MPa) 65.966 

Equivalent mean stress (MPa) 68.240 

Mean stress to tensile strength ratio 8.060 

Effective stress 66.997 

Reliability Assessment Value  
Reliability factor 2.985 

Effective stress cov 0.134 

Unit normal variate 4.421 

Reliability level (%) 99.9997 

 

4.2 Example 2 Problem 

Redesign the brackets of Figure 4 so that h and H maintains the same ratio for a reliability of 99.9%. The 
material and other conditions remain the same as stated in Example 1. 

4.2.1 Example 2 Solution  

As seen in Equation 8b, the reliability factor and reliability level are dependent in probabilistic design. So they 
cannot be independently specified as is often done in deterministic design. That is why two new design solutions 
(Example 2 and Example 3) are presented for example 1. The task in this problem is to determine the dimensions 
of the bar at the critical section which is at the fillet location in Figure 4. The shape of the cross-section is 
rectangular as shown on the right side of Figure 4. Economical beams generally have a height-width ratio of 2 to 
4 Onuoye (2007), so a ratio of 3 was used for a trial size. The design sizing was performed in an Excel 
Spreedsheet using Equatio ns 11, 13, 14, 15, 8a and 8b. For 99.9% reliability, kσ = 1.3 was assumed for a trial 
solution. The section depth, h was calculated as 43.87 mm and width as 14.62 mm. But the depth was chosen as 
42 mm while the width was chosen as 15 mm. With these chosen dimensions:  

H = 1.125×42 = 47.25 mm 

Use H = 48 mm. Then 

h

H = 48
1.143

42
  and 12.7

0.3024
42

r

h
  . 

Based on the ratios 1.125 and 0.3175 and from Figure 4.36 (Norton2000), k′σ was read to be 1.3 and kσ was 
evaluated to be 1.263. k′σ and kσ are related by the notch sensitivity factor. Table 3 summarizes the design 
analysis for this solution. 

4.3 Example 3 Problem 

Redesign the brackets of Figure 4 so that h and H maintains the same ratio for a minimum reliability factor of 2.5. 
The material and conditions stated in Example 1 apply.  
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4.3.1 Example 3 Solution  

For a minimum reliability factor of 2.5, kσ = 1.3 was again assumed for a trial solution. The section depth, h was 
calculated to be 45.87 mm and the width as 15.29 mm. However the depth was chosen as 45 mm and the width 
was chosen as 15 mm. With these dimensions: 

H = 1.125×45 = 50.63 mm 

Use H = 50 mm. Then 

50
1.111

45

H

h
   and 12.7

0.282
45

r

h
  . 

Based on the ratios 1.111 and 0.282 and from Figure 4.36 (Norton, 200), k′σ was read to be 1.33 and kσ was 
evaluated to be 1.277. Table 4 summarizes the design analysis for this solution. 

 

Table 3. 99.9% Reliability solution 

Design Analysis 
Section Properties Value 
Major section modulus (mm3) 4410 

Minor section modulus (mm3) 1575 

Stress Concentration Factors Value 
Bending stress con. factor 1.263 

Equivalent Loads Value 

Minor section modulus factor 0.357 

Equivalent alternating moment (Nmm) 356732 

Equivalent mean moment (Nmm) 338938 

Effective Stress Value 
Equivalent alternating stress (MPa) 88.981 

Equivalent mean stress (MPa) 84.542 

Mean stress to tensile strength ratio 6.506 

Effective stress (MPa) 91.134 

Reliability Assessment Value 
Reliability factor 2.195 

Effective stress cov 0.134 

Unit normal variate 3.163 

Reliability level (%) 99.92 
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Table 4. 2.5 Reliability factor  

Design Analysis 
Section Properties Value 
Major section modulus (mm3) 5063 

Minor section modulus (mm3) 1688 

Stress Concentration Factors Value 
Bending stress con. factor 1.277 

Equivalent Loads Value 
Minor section modulus factor 0.333 

Equivalent alternating moment (Nmm) 360686 

Equivalent mean moment (Nmm) 338938 

Effective Stress Value 
Equivalent alternating stress (MPa) 78.364 

Equivalent mean stress (MPa) 73.639 

Mean stress to tensile strength ratio 7.469 

Effective stress (MPa) 79.794 

Reliability Assessment Value 
Reliability factor 2.506 

Effective stress cov 0.134 

Unit normal variate 3.706 

Reliability level (%) 99.989 

 

5. Solutions’ Comparison 
Table 5 is a summary of the three solutions to the example problem. It shows the deterministic solution gave 
very conservative results in all design parameters considered. The next conservative results are from the 2.5 
minimum reliability factor constrain. The optimum results are based on the desired reliability goal of 99.9%. The 
reliability factor of 2.2 for this solution is based on the desired failure probability of 0.1% and cannot be 
independently specified. The deterministic solution gives a 20% increase in reliability factor over the required 
value and 43% increase in the unit normal variate required, yielding a higher reliability of 99.9997. The optimum 
solution yields 12% decrease in reliability factor and 2.3% increase in the unit normal variate required. While the 
design reliability requirement is “three nines”, the deterministic solution yields almost “six nines”! Clearly, if the 
dimensions for the deterministic solution were adopted as final values, then it would appear to have been a case 
of over-design. This would support the view of Kalpakjian and Schmid (2001), who noted that over-design is not 
an uncommon issue with past designs. 

 

Table 5. Solutions’ summary 

Design Parameter Solutions 
Deterministic 99.9% Reliability 2.5 Reliability Factor 

Effective stress (MPa) 67 91 80 

Reliability factor 2.99 2.20 2.51 

Unit normal variate 4.42 3.16 3.71 

Reliability (%) 99.9997 99.92 99.989 
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The deflections at the point of load application and at the end of the bracket were computed for a cantilever 
beam (Figure 4). The computed deflection values are compared in Table 6 for the three solutions with the 
allowable. These values are much lower than the maximum allowable value of 0.51 mm, indicating that the three 
design solutions satisfy the deflection requirement. 

 

Table 6. Deflection comparison 

Design Parameter Solutions 
Deterministic 99.9% Reliability 2.5 Reliability Factor 

Deflection at load point (mm) (mm) 0.252 0.174 0.142 

Deflection at bar end (mm) 0.300 0.225 0.184 

Bar end deflection (%) 59 44 36 

 

Table 7 summarizes the cross-sectional dimensions and area of the bar. The cross-sectional area of the optimum 
solution is a 51% reduction in area compared to the deterministic solution. Practically, this translates to a 51% 
reduction in weight or material cost per component at 44% of maximum allowable deflection. Certainly a 51% 
savings in material cost could translate into thousands if not millions of dollars in savings in a large volume 
production considering that two components per equipment are required!   

 

Table 7. Size comparison 

Design Parameter Solutions 
Deterministic 99.9% Reliability 2.5 Reliability Factor 

Depth (mm) 25.4 42 45 

Width (mm) 51 15 15 

Area (mm2) 1295 630 675 

Area comparison (%) 100 49 52 

 
6. Conclusions 
A probabilistic fatigue design approach based on the Gerber failure rule has been presented. The model design 
parameters use mean values to estimate expected design results while the reliability of the design is evaluated 
using the coefficients of variation of the design parameters. The coefficients of variation of strength and stress 
were developed using sensitivity analysis based on first order Taylor series expansion of design relationships. A 
typical design problem was analyzed and redesigned using the approach. As can be seen from Table 7, 
significant reduction in component mass can be realized when probabilistic design is adopted. A more accurate 
assessment of risk is possible since the reliability factor is dependent on an adopted failure probability. To make 
probabilistic design more wide spread, it is recommended that design data presentation need a new format 
(Shigley & Mischke, 1996): mean values and coefficients of variation (covs). To facilitate distinction between 
ductile and brittle materials, it is also recommended that the mean and coefficient of variation values of 
percentage elongation of engineering materials be reported. Since more than 5% elongation is conventionally 
taken for ductile materials, it will be thus easy to decide when choosing materials for fatigue design applications. 
For probabilistic fatigue design, data on the mean and coefficient of variation of tensile strength, fatigue strength, 
and percentage elongation are therefore recommended.  
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Appendix: Design Model Parameters’ Variability  
Mischke (1996) stated that deterministic and familiar engineering computations are useful in stochastic problems 
if mean values are used. Therefore, if the mean and standard deviation or coefficients of variation of design 
parameters are available, a probabilistic analysis is possible. In this study, the design variables are characterized 
by the means and coefficients of variation of sample data. The use of the coefficient of variation is particularly 
desirable since it can be conveniently summarized for a large class of materials and parts (Pandit & Shiekh, 
1980). According to Mischke (1996), sum of variates from any distribution tend asymptotically to lognormal. 
Products, quotients, and exponents of lognormals are lognormals. Products of variates from any distribution tend 
asymptotically to lognormal. Since model design formulas in mechanical and structural problems consist of 
products, quotients or sums of products and quotients of design parameters, the lognormal probability 
distribution is a strong candidate for application in probabilistic design.  

Suppose a function χ, has the random variables 1 2 3, , ....... nx x x x as independent variables. Then: 

1 2 3( , , ....... )nf x x x x                                   (A1) 

For a first order estimate, the mean and standard deviation of χ are respectively: 

1 2 3( , , ....... )x x x xnf                                  (A2a) 

2

2

1

n

xi
ii

s s
x




    
                                   (A2b) 

The coefficient of variation is the ratio of standard deviation to the mean value. 

s






                                     (A3a) 

s                                      (A3b) 

In evaluating the coefficient of variation, the power rule can be applied to the design parameters followed by 
simplification of the expression for coefficient of variation. The power rule requires the product of the square of 
the coefficient of variation of a parameter and its exponent in a formula. That is (Mischke, 1996): 

1 2 3
a b cy Kx x x                                     (A4a) 

1

2
2 2 2 2 2 2

1 2 3y x x xa b c   
 

   
 

                          (A4b) 

Now engineering design models are approximations of reality and formulations for the same problem vary. 
However, simplified models in engineering design have been in practice for over two hundred years. They are 
generally sufficiently accurate to about ±10% of reality (Matthews, 2005). To account for this variation, a 
miscellaneous coefficient of variation ( mis ) seems justified in probabilistic design and a value of 5% is 
suggested. 

Gerber Failure Model and Variability 

In Figure 3, the Gerber fatigue design space is divided into two regimes: dynamic and static failure regimes. In 
the following sections, expressions for the coefficients of variation of the expected stress from external loads will 
be developed. 

Dynamic Fatigue Failure 

In the dynamic fatigue failure regime, the effective normal stress is projected on the vertical axis as shown in 
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Figure 3. An effective normal stress can be defined for the dynamic fatigue failure regime (Collins, Busby, & 
Staab, 2010; Osakue, 2012):  

 a
ef

k 


                                       (A5a) 

2 2 2 2
mis k a Y                                         (A5b) 

Equation A6b is obtained by applying the power rule (Equation A4) to Equation A6a and:   

  = 
2

1 m

uS

 
  
 

                                (A6a) 
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                          (A6b) 

From Equation A6a:  

m

Y


 
  

 = 
2

2 m

uS


  

u

Y

S

 
  

 = 
2

3

2 m

uS


                          (A7) 

Substitute Equation A7 in Equation A6b and simplify: 
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Y

s
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    
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1mn 

1
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m u                            (A9a) 

u
m

m

S
n


                                      (A9b) 

Substitute Equations A9b, A10, and A20 into Equation A5b:  

1
2 2

2 2 2 2 2 2 2 2 2
2

2
9 ( 9 )

1
mis k F l h F l h u

mn
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                
             (A10) 

Static Fatigue Failure 

In the static fatigue failure regime, the effective normal stress is projected on the horizontal axis as shown in 
Figure 3; the effective mean normal stress is (Osakue, 2012):   
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Where 
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 Y = 1 a

f

k

S
                                  (A12) 
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From Equation A12 
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Substitute Equation A14 in Equation A13 and simplify:  
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Then 
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               (A17) 

Bending Stress Variability 
Bending stress, also referred to as flexural stress, is caused by the bending effect of a lateral force. It varies from 
zero at the neutral axis to a maximum on the surface of a member. FigureA1 shows the configuration of a beam 
revealing the orthographic views. The beam cross-section is shown on the lower right of the Figure. The width of 
the beam is assumed proportional to the depth with φ as the shape ratio.  

 

 
Figure A1. Beam geometry 
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The bending stress at a section is: 

σ = 
M

Z
                                  (A18) 

where 

lFM m                                 (A19a) 

Z = 
2

6

bh
= 

3

6

h


                              (A19b) 

h
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
                                   (A19c) 

In Equation A19a, the maximum bending moment M on a beam from a concentrated load is expressed in a 
general form. The parameter βm depends on the position of the load on the beam span and the end fixity of the 
beam. For instance; in the case of a simply supported beam, βm = 0.25 if the load is at mid span and βm = 1 for a 
cantilever beam carrying a concentrated load at its free end. Substitute Equation A19 in equation, A18, and 
simply to symbolic form:  
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                            (A20a) 

 21222 9 hFl v
s  


 
                           (A20b) 

Equation A20b is obtained by applying the power rule to equation A20a. In fatigue design, Equations A20a and 
A20b apply separately to Fm and Fa so: 

νm  = νa = 222 9 hlF                          (A21) 

Nomenclature 

s   service fatigue ratio 

o   basic fatigue ratio 

   load line transition angle  

m   bending moment factor 

    load line slope factor 

t   load line slope transition factor in fatigue 

A   Gerber nominal alternating service stress 

a   alternating normal service stress 

m   mean normal service stress 

ef   effective service bending stress 

k   service bending stress concentration factor 
/k    theoretical bending  stress concentration factor 

Zx =  section modulus of member about x-axis 

Z =  section modulus of member 

mn   mean stress ratio relative to tensile strength 

σM =  Gerber nominal mean service stress 

    nominal bending stress 

an   ratio of effective alternative stress to fatigue strength 
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F    concentrated load 

mF   concentrated load mean value 

aF  concentrated load alternative value 

M  bending moment 

mM  bending moment mean value 

aM  bending moment alternative value 

b   beam width 

h   beam depth 

H  beam shoulder depth 

l   beam length 

d   shaft solid diameter 

    beam depth-to-width ratio 

    minor-to-major ratio of section moduli  

fS    laboratory test fatigue strength  

uS    laboratory test ultimate tensile  

fS  service or corrected fatigue strength 

uS  service or corrected ultimate tensile strength 

szC  size adjustment factor 

srC  surface roughness adjustment factor 

tmC  temperature adjustment factor 

S  coefficient of variation of strength 

  coefficient of variation of effective Normal stress, ef  

o  coefficient of variation of basic fatigue ratio 

m  coefficient of variation of mean normal stress, m  

a  coefficient of variation of alternating stress, a  

k  coefficient of variation of service stress concentration factor 

νF =  coefficient of variation of the load F 

νl =  coefficient of variation of member length 

νh =  coefficient of variation of cross-section depth h (same for width b or diameter d) 

mis  miscellaneous coefficient of variation 

u   service tensile strength coefficient of variation  

f   service fatigue strength coefficient of variation  

sz   size coefficient of variation 

sr   surface roughness coefficient of variation 

tm   temperature coefficient of variation 

su   laboratory tensile strength coefficient of variation  

    a primary dependent random variable 

ix   ith independent random variable 

Y    a secondary dependent random variable 

f( ) =  function of independent variables 

S   strength random variable 

    stress random variable 
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x    strength lognormal random variable 

y    stress lognormal random variable 

q    failure stress lognormal random variable 

    mean value variable 

s   standard deviation variable 

S   strength variable mean value 

   stress variable mean value 

x   strength lognormal variable mean value 

y   stress lognormal variable mean value 

q   failure stress lognormal variable mean value 

xs   strength lognormal standard deviation 

ys   stress lognormal standard deviation 

qs   failure lognormal standard deviation 

z   unit normal variate 

zn   design reliability factor at z 

zR  reliability at z 

    cumulative probability density function 

r   fillet radius 

K    generic factor 

, ,a b c   functional indices 
 


