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Abstract 

The explicit algebraic Reynolds stress models are obtained from second-order closure models that are valid for 
three-dimensional turbulent flows in non-inertial frames. The purpose of this present research is to simplify the 
development of the Reynolds stress anisotropy tensor. This anisotropy stress tensor has seven scalar coefficients 
and has seven tensor polynomial groups that are the integrity basis for the functions of both symmetric and 
antisymmetric tensors. This research will also explicitly determine the six independent invariants of the mean 
strain rate tensor and of the mean rotation rate tensor. The resulting algebraic equation for the anisotropy tensor 
depends on the choice of the model that is used to determine the dissipation rate and pressure-strain correlation. 
These equations also represent the slow pressure strain rate and an isotropic dissipation rate tensor of the Rotta 
model. The results of present research can be compared with the results of Gatski and Speziale that give the 
complete expression for a traceless symmetric second order tensor which depended on the symmetric and the 
antisymmetric tensor that involved ten tensor polynomial groups with five independent invariants. The present 
work reduces the ten tensor polynomial groups down to seven groups which drastically decreases computational 
time.  

Keywords: explicit algebra, Reynolds stress models, turbulent flows, engineering applications 

1. Introduction 

Turbulent flows occur naturally in nature as well as in engineering applications on many levels. For example, in 
nature one can observe turbulent flows that occur in the water below the surface of an ocean, in a river, in 
atmosphere and even in the lungs of a human being. With respect to mechanical engineering, turbulent flows occur 
in when one drives a car, flies an airplane, cools, and heats one’s home, etc. The Navier-Stokes equation can 
properly describe the details of turbulent motions (Spencer & Rivin, 1958; Spencer, 1971). The ensemble averaged 
Navier-Stokes equations are often sufficient and practical to describe the turbulent motions in engineering 
problems. In taking an average of the Navier-Stokes equations for turbulent flow, which is three-dimensional, 
unsteady, irregular, random, and rotational one must find the Reynolds stress equation that appears in the 
Navier-Stokes equation (Pope, 1975). This is accomplished by multiplying the Navier-Stokes equation by a 
fluctuating property and by the time average product. Using this procedure a differential equation for the Reynolds 
stress tensor can be derived (Daly & Harlow, 1970).  

The purpose of the present research is to obtain the Reynolds stress anisotropy tensor for the turbulent flows by 
determining the seven Li coefficients. These coefficients are based from the Reynolds stress transport equation 
(Lumley, 1970). The terms of the Reynolds stress tensor are the pressure-strain correlation ij , the 
dissipation-rate correlationij , and third-order diffusion correlation ijkC , where the pressure-strain correlation 

ij ; is a function related to the anisotropy tensor bij, the turbulent kinetic energy K, the scalar turbulent dissipation 
rates  , Aij and Mijkl; Aij and Mijkl are actually functions, in time and are wave-number spaces, of the energy 
spectrum tensor (Launder, Reece, & Rodi, 1975). The model for the pressure-strain correlation can be written in 
equivalent form as a function of the anisotropy tensor bij, the mean strain rate tensor Sij and the mean rotation rate 
tensor Wij (Rodi, 1996). 

The anisotropy tensor bij is a function of the pressure-strain correlation, and the main issue in obtaining this 
anisotropy tensor is the determination of the seven Li coefficients, which are scalar functions, that involves seven 
tensor polynomial groups with six independent invariants. 



www.ccsenet.org/mer Mechanical Engineering Research Vol. 2, No. 1; 2012 

96 
 

2. Present Research 

In the present research, for three dimensional turbulent flows the anisotropy tensor bij shown as follows: 

     bij 


i 1

7

Li wi            (2.1) 

where wi is the integrity basis for the functions of a symmetric and antisymmetric tensor of the mean velocity 
gradient and Li are scalar functions depend on the six of the irreducible invariants of Sij and Wij. Let the integrity 
basis wi as follows: 

                                   w0 = I 

                                   w1 = v1 

                                   w2 = v2 

                                   w3 = v3 - g31 w1 - g30 I 

                                   w4 = v4 - g43b w3 - g41 w1 - g40 I 

                                   w5 = v5 - g52 w2 

                                   w6 = v6 - g65b w5 - g64b w4 - g63b w3 - g61 w1 - g60 I 

             w7 = v7 - g75b w5 - g74b w4 - g73b w3 - g72 w2 

and 

                                   v8 = g85b w5 + g84b w4 + g82 w2 

                                   v9 = g96b w6 + g95b w5 + g94b w4 + g93b w3 + g92 w2 + g91 w1 + g90 I 

                                   v10 = g107b w7 + g105b w5 + g104b w4 + g103b w3 + g102 w2 + g101 w1 

where the mean strain rate tensor Sij and the mean rotation rate tensor Wij are the symmetric and antisymmetric 
parts of the mean velocity gradient tensor as follows : 
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g107b = 
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).(

77
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wwtrace

wvtrace  and g31 = 
).(

).(

11

13

vvtrace

vvtrace  

I denotes the unit tensor and let vi is the functions of a symmetric and antisymmetric tensor as follows: 

                                    v1 = S 

                                    v2 = S W - W S 

                                    v3 = S2 

                                    v4 = W2 

                                    v5 = W S2 - S2 W 

                                    v6 = S W2 + W2 S 

                                    v7 = W S W2 - W2 S W 

                                    v8 = S W S2 - S2 W S 

                                    v9 = W2 S2 + S2 W2 

                                    v10 = W S2 W2 - W2 S2 W 

and let the six irreducible invariants of Sij and Wij are:  

                                     I1 = < S2 > 

                                     I2 = < W2 > 

                                     I3 = < S3 > 

                                     I4 = < S W2 > 

                                     I5 = < S2 W2 > 
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                                        I6 = < S2 W2 S W > 

In the present research, an explicit relationship for the anisotropy tensor is computed by two methods. The 
coefficients Li are determined by using two methods then the numerical results of the anisotropy tensor bij of the 
present research are compared with the numerical results of Gatski and Speziale (1993), from these results it will 
be clear that all three methods will have the exact same numerical results. Therefore the anisotropy tensor can then 
be written as follows: 

bij = G T L wi
i

i i
i

i
 
 

1

10

1

7

 

3. Calculation and Numerical Results 

Method One: Calculation of the Anisotropy Tensor 

To find the explicit expression for the anisotropy tensor that requires some knowledge of basic in linear algebra, 
the theory of invariants and the theory of matrix polynomials and its application to fluid mechanics. To determine 
Li are the scalar functions of the six irreducible invariants of Sij and Wij. First the matrix Hij, that is [7x7] matrix 
must be determined.  





7

1,1

7

1
1 (

ji
ij

i
i  - Hij + Jij ) Lj       (3.1) 

Where 

Aji = -  ij - Hij + Jij         (3.2) 

and let 

    Bi = 


7

1
1

i
i          (3.3) 

    Bi = Aij Lj          (3.4) 

Thus 

   Lj = Aj1
1          (3.5) 

where Li, i = 1, 2, 3, 4, 5, 6, and 7 are the solutions of the explicit expression for the anisotropy tensor. The present 
numerical results can be compared with the numerical results of Gatski and Speziale, it can be seen that both of 
them have exactly the same numerical results for the anisotropy tensor bij, that is: 

bij = G T L wi
i

i i
i

i
 
 

1

10

1

7

 

The solutions of the matrices Aji, Hij and Jij. 

1.                   w1 S + S w1 - 2/3 < w1 S > I = S S + S S - 2/3 < S S > I= 2 S2 - 2/3 I1 I 

Where 

S2 = v3 = w3 + g31 v1 + g30 I, < S2 > = I1  

and 

g30 = 
33

).(

).(

).( 1
2

3 IIStrace

IItrace

Ivtrace
  

then 

2 ( S2 - 1/3 I1 I ) = 2 ( w3 + g31 v1 + g30 I - 1/3 I1 I ) 

Thus, 

w1 S + S w1 - 2/3 < w1 S > I = 2 w3 + 2 g31 w1      (3.6) 

2.       w2 S + S w2 - 2/3 < w2 S > I = ( S W - W S ) S + S ( S W - W S ) - 2/3 < ( S W - W S ) S > I 
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= S W S - W S2 + S2 W - S W S - 2/3 < S W S - W S2 > I  

then 

= - W S2 + S2 W= - v5 = - w5 - g52 w2 

Thus, 

w2 S + S w2 - 2/3 < w2 S > I = - w5 - g52 w2      (3.7) 

3. w3 S + S w3 - 2/3 < w3 S > I = ( v3 - g31 v1 - g30 I ) S + S ( v3 - g31 v1 - g30 I ) -2/3 < ( v3 - g31 v1 - g30 I ) S > I 

= S3 - g31 S
2 - g30 S + S3 - g31 S

2 - g30 S - 2/3 < S3 - g31 S
2 > 

= 2 S3 - 2 g31 S
2 - 2 g30 S - 2/3 I3 + 2/3 ( I3/I1 ) I1                            (3.8) 

where < g30 S > = 0, S = v1 = w1 and g31 = I3/ I1 

From 3.8, let a = S then 

S3 = -1/2 S ( - < S2 > ) + I det S, 

Where 

det S = 1/3 < S3 > = I3/3 

then 

S3 = I1/2 w1 + I3/3 

and 

S2 = v3 = w3 + g31 w1 + g30 I 

then equation (3.8) becomes as 

= I1 w1 + 2/3 I3 - 2 g31 (w3 + g31 w1 + g30 I ) - 2 g30 w1 

where  

- 2 g31 g30 = - 2/3 I3 

Thus, 

w3 S + S w3 - 2/3 < w3 S > I = w1 ( I1 - 2 g31
2 - 2 g30 ) - 2 g31 w3    (3.9) 

Similarly  

4.               w4 S + S w4 - 2/3 < w4 S > I = w1 [ g61 - I1 g43b + 2 ( g43b g31
2 - g41 g31) +  

2 ( g43b g30 - g40)] + w3 [ g63b + 2 ( g43b g31 - g41)] + g64b w4 + g65b w5 + w6           (3.10) 

5.             w5 S + S w5 - 2/3 < w5 S > I = w2 ( -I1/2 + g82 + g52
2 ) + g84b w4 + w5 ( g85b + g52)       (3.11) 

6.             w6 S + S w6 - 2/3 < w6 S > I = w1 ( -2 g31 g61 - 2 g60 + 2 g31
2 g63b + 2 g30 g63b +  

 2 g31 g41 g64b + 2 g40 g64b - 2 g31
2 g43b g 64b - 2 g30 g43b g64b - g61 g64b - g91 + g41 I1 - 

  g63bI1 + g43b g64b I1 + 2 g31 I2 + 2 I4 ) +w2 ( - g52
2 g 65b - g65b g82 - g92 + g65b I1/2 ) + 

    w3 ( - 2 g61 + 2 g31 g63b + 2 g41 g64b - 2 g31 g43b g64b - g63b g64b - g93b + g43b I1 + 2 I2 ) + 

w4 ( - g64b
2 - g65b g84b - g94b + I1 ) +w5 ( - g52 g65b - g64b g65b - g65b g85b - g95b ) + w6 ( - g64b - g96b)  (3.12) 

7.               w7 S + S w7 - 2/3 < w7 S > I = w1 ( - 2 g101 + 2 g31
2 g73b + 2 g30 g73b +   

          2g31 g41 g74b+2 g40 g74b -2 g31
2 g43b g74b - 2 g30 g43b g74b - g61 g74b - g73b I1 + g43b g74b I1)+ 

                 w2 ( - 2 g102 + g52 g72 - g52
2 g75b - g75b g82 + g75b I1/2 + g52 I2 -  

                 w3 ( - 2 g103b + 2 g31 g73b + 2 g41 g74b - 2 g31 g43b g74b - g63b g74b ) + 

                 w4 ( - 2 g104b - g64b g74b - g75b g84b ) + 

w5 ( - 2 g105b + g72 - g65b g74b - g52 g75b - g75b g85b + I2 ) + w6 ( - g74b ) + w7 ( - 2 g107b)   (3.13)

To find the matrix Jij, that is [7x7] matrix 

1.                       w1 W - W w1 = S W - W S,  w1 W - W w1 = w2                        (3.14) 

2.            w2 W - W w2 = ( S W - W S ) W - W ( S W - W S )= S W2 - W S W - W S W + W2 S  

where  
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S W2 + W2 S = v6 

then 

= v6 - 2 W S W 

From equation (3.14), let a = W, b = S. 

W S W = - ( W2 S + S W2 ) + I2/2 S + I I4 

then 

w2 W - W w2 = 3 v6 - I2 S - 2 I I4 

where  

v6 = w6 + g65b w5 + g64b w4 + g63b w3 + g61 w1 + g60 I and S = w1 

Thus, 

w2 W - W w2 = w1 ( 3 g61 - I2 ) + w3 ( 3 g63b ) + w4 ( 3 g64b ) + w5 ( 3 g65b ) + 3 w6  (3.15) 

3.                   w3 W - W w3 = ( v3 - g31 v1 - g30 I ) W - W ( v3 - g31 v1 - g30 I )   

Where 

v3 = S2 

then 

= S2 W - g31 S W - g30 I W - W S2 + g31 W S + g30 I W 

Where 

- g31 ( S W - W S ) = - g31 v2, and S2 W - W S2 = - v5 = - w5 - g52 w2 

Thus, 

w3 W - W w3 = w2 ( - g52 - g31 ) - w5       (3.16) 

Similarly  

4.                           w4 W - W w4 = w2 ( g43b g52 + g43b g31 - g41 ) + w5 g43b                (3.17) 

5.         w5 W - W w5 = w1 ( - 3 g91 - 3 g52 g61 + g52 I2 + I2 g31 + 2 I1 g41 ) + w2 ( - 3 g92 ) + 

              w3 ( - 3 g52 g63b + I2 + 2 I1 g43b - 3 g93b ) + w4 ( - 3 g94b - 3 g52 g64b + 2 I1 ) + 

 w5 ( - 3 g95b - 3 g52 g65b ) + w6 ( - 3g96b - 3 g52 )       (3.18) 

6.         w6 W - W w6 = w1 (3 g52 g61 g65b + 3 g65b g91 - 2 g41 g65b I1 - g31 g65b I2 - g52 g65b I2 ) +  

                       w2(-g61 +g31 g63b + g52 g63b + g41 g64b - g31 g43b g64b -g43b g52 g64b - g72+3g65b g92 +I2/2) + 

                       w3 ( 3 g52 g63b g65b - g73b + 3 g65b g93b - 2 g43b g65b I1 - g65b I2 ) + 

                       w4 ( 3 g52 g64b g65b - g74b + 3 g65b g94b - 2 g65b I1 ) + 

                       w5 ( g63b - g43b g64b + 3 g52 g65b
2 - g75b + 3 g65b g95b ) + 

w6 ( 3 g52 g65b + 3 g65b g96b ) - w7                             (3.19) 

7.             w7 W - W w7 = w1 ( - 3 g61 g72 + 3 g52 g61 g75b + 3 g75b g91 - 2 g41 g75b I1 - 2 g61 I2 + 

                       g72 I2 - g31 g75b I2 - g52 g75b I2 + I2
2 - 2 g41 I 4 ) + 

                    w2 ( g31 g73b + g52 g73b + g52 g73b + g41 g74b - g31 g43b g74b - g43b g52 g74b + 3 g75b g92 ) + 

                       w3 (-3 g63b g72 + 3 g52 g63b g75b + 3 g75b g93b - 2 g43b g75b I1 - 2 g63b I2 - g75b I2 - 2 g43b I4)+ 

             w4 ( - 3 g64b g72 + 3 g52 g64b g75b + 3 g75b g94b - 2 g75b I1 - 2 g64b I2 - 2 I4 ) + 

             w5 ( - 3 g65b g72 + g73b - g43b g74b + 3 g52 g65b g75b + 3 g75b g95b - 2 g65b I2 ) + 

w6 ( - 3 g72 + 3 g52 g75b + 3 g75b g96b - 2 I2 )                       (3.20) 

To find the matrix Aij = -  ji - H ji + J ji. 

The main issue in obtaining an explicit relation for the anisotropy is determining the Li coefficients by taking the 
inverse of the matrix Aij, the first column of the matrix Aij are the solutions of L1, L2, L3, L4, L5, L6, and L7. In 
mathematical computation can be used by software Mathematica version 4.0 to calculate all this research, the 
matrices Aij, Hji, and Jji. 
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Method Two: Calculation of the Anisotropy Tensor 

Using equations (3.19) to (3.20) to calculate the anisotropy tensor and compare the present results with the results 
of Gatski and Speziale, they let the anisotropy tensor as is function of ten terms Ti that are the integrity basis for 
functions of symmetric and antisymmetric tensor, and ten Gi are scalar functions of the irreducible invariants of Sij 
and Wij as follows: 

     bij = 
i


1

10

Gi Ti                               (3.21) 

     = 
i


1

7

Gi Ti + 
i


8

10

Gi Ti                        (3.22) 

From equation (3.22) the expression between wi and Ti can be written as 

    
i


1

7

wi = [ Pij] 
j


1

7

Tj                          (3.23) 

    
j


1

7

Tj = [ Pij ]
-1 

i


1

7

wi                         (3.24) 

and from equation (3.24) the expression between Ti and wi can be written as 

    
i


8

10

Ti = [ Qij ] 
j


1

7

wj                         (3.25) 

From equations (3.24) to (3.25) lead to find the anisotropy tensor bij that is result to compare the present solution 
with Gastki and Speziale’s solution (p. 45). 

 bij = [ G1, G2, G3, G4, G5, G6, G7 ] [ Pij]
-1 

i


1

7

wi + [ G8, G9, G10 ] [ Qij ] 
j


1

7

wj                (3.26) 

Thus, 

bij = ( G1 + G10 g101 + G3 g31 + G4 g41 + G6 g61 + G9 g91 ) w1 + 

   ( G10 g102 + G2 + G5 g52 + G7 g72 + G8 g82 + G9 g92 ) w2 + 

      ( G10 g103b + G3 + G4 g43b + G6 g63b + G7 g73b + G9 g93b ) w3 + 

      ( G10 g104b + G4 + G6 g64b + G7 g74b + G8 g84b + G9 g94b ) w4 + 

      ( G10 g105b + G5 + G6 g65b + G7 g75b + G8 g85b + G9 g95b ) w5 + 

( G6 + G9 g96b ) w6 + ( G10 g107b + G7 ) w7                    (3.27) 

where 

g101 = 
trace v v

trace v v

( . )

( . )
10 1

1 1

  and   g43b = 
trace v w

trace w w

( . )

( . )
4 3

3 3

 

v10.w1 = ( W S2 W2 - W2 S2 W ) . S = W S2 W2 S - W2 S2 W S 

then 

trace (v10.w1) = trace ( W S2 W2 S ) - trace ( W2 S2 W S ) 

and from equation (3.27), let a = W, b = S then 

W S W2 + W2 S W = W S W trace ( W ) + W2 trace ( W S ) + 

W [ trace(W2 S) - trace(W) trace(W S)] - S determinant(W) + I determinant(W) trace(S)       (3.28) 
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Where 

trace( W ) = 0, trace ( W S ) = 0, trace ( S ) = 0 

and  

determinant( W ) = 0 

then 

W S W2 + W2 S W = W trace ( W2 S ) 

Where 

trace ( W2 S ) = trace ( S W2 ) = I4 

Thus, equation (3.28) becomes 

W S W2 + W2 S W = W I4         (3.29) 

Multiplication the left side and the right side of equation (3.29) with S2 then 

S2 W S W2 + S2 W2 S W = I4 S
2 W         (3.30) 

Taking the trace for both side of equation (3.30) then 

trace (S2 W S W2) + trace ( S2 W2 S W ) = I4 trace (S2 W)     (3.31) 

where 

trace ( S2 W ) = 0 and trace ( S2 W2 S W ) = I6 

thus equation (3.31) yields 

- trace (S2 W S W2) = trace( S2 W2 S W ) = I6 

Then 

trace ( v10. w1 ) = trace ( W S2 W2 S ) - trace ( W2 S2 W S )= 2 I6 

trace ( w1.w1 ) = trace ( S. S ) = I1 

Thus 

 g101 = 2 I6/ I1         (3.32) 

  g31 = 
).(

).(

11

13

wwtrace

wvtrace  = 
).(

).( 2

SStrace

SStrace  = 
1

3

I

I       (3.33) 

 g41 = 
).(

).(

11

14

wwtrace

wvtrace  = 
).(

).( 2

SStrace

SWtrace  = 
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I
4

1

      (3.34) 
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).(

11

16

wwtrace

wvtrace  = 
1

2222 )(2

).(
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I

WStrace

SStrace

SSWSWtrace


  = 
2 5

1

I

I
     (3.35)
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3241
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23322222
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WSSWtrace

SStrace

SWSSWtrace

wwtrace

wvtrace
g








   (3.36) 

Similarly 

 g43b = )//()
3

(
).(

).(
1

2
3

2
16

12
1

1

4
35

33

34 III
I

I
I

I
II

wwtrace

wvtrace
     (3.37) 

 g102b = 
521

543
2

2

22

210

6

23/

).(

).(

III

IIII

wwtrace

wvtrace




         (3.38) 

 g52 = 
521

3241

22

25

6).(

).(

III

IIII

wwtrace

wvtrace




         (3.39) 

 g63b = )//()/2(
).(

).(
1

2
3

2
16

1
153323

2
413

1

33

36 IIIIIIIIII
wwtrace

wvtrace
    (3.40) 
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 g73b = )//(2
).(

).(
1

2
3

2
16

1
6

33

37 IIII
wwtrace

wvtrace
         (3.41) 

 g93b = )//()3/(
).(

).(
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2
3
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16

1
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2
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23
2

4351
33

39 IIIII
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I
IIIII

wwtrace

wvtrace
   (3.42) 

 g103b = 
1

63

33

310 2

).(

).(

I

II

wwtrace

wvtrace
           (3.43) 

 g43b = )//()
3

(
).(

).(
1

2
3

2
16

12
1

1

4
35

33

34 III
I

I
I

I
II

wwtrace

wvtrace
      (3.44) 

4. Discussion of the Numerical Results 

Comparison of the Numerical Results the Anisotropy Tensor 

The mean of strain rate tensor Sij and the mean of rotation rate tensor Wij that the symmetric and antisymmetric 
parts of the mean velocity gradient tensor as 

)(
2

1

i

j

j

i
ij x

U

x

U
S







     )(
2

1

i

j

j

i
ij x

U

x

U
W








 

Sij = อ
sୟ sଵଶ sଵଷ
sଶଵ sୠ sଶଷ
sଷଵ sଷଶ sୡ

อ 

where  

sa + sb + sc = 0 and s12 = s21, s13 = s31, s23 = s32 

Wij = อ
0 wୟ wୠ
wୟ 0 wୡ
wୠ wୡ 0

อ 

Mathematica version 4.0 (Wolfram, 1999) was used to determine all the mathematical computation in this 
research. The following describes the steps of performing the computation calculations. First input any random 
numbers of Sij and Wij from -1. to 1. and check the numbers of w1, w2, w3, w4, w5, w6, and w7, if one or more of them 
equal to zero, for instance, if w3 = {{0.,0.,0.},{0.,0.,0.},{0.,0.,0.}} and w5 = {{0.,0.,0.},{0.,0.,0.}, {0.,0.,0.}} then 
g43b, g63b, g65b, g73b, g75b, g85b, g93b, g95b, g103b, and g105b will approach some constant and after that these terms time 
with w3 and w5 then they always equal to zero, it means every g relates to w3 = {{0.,0.,0.}, {0.,0.,0.}, {0.,0.,0.}} 
and w5 = {{0.,0.,0.},{0.,0.,0.},{0.,0.,0.}} have to set equal to some constant because g43b = trace(v4 w3)/trace(w3 
w3) that Mathematica could not solve but actual w3 and w5 approaches very small constants, then the program is 
ran again. The result of the anisotropy tensor bij can be written as follows: 

bij = ( G1 + G10 g101 + G3 g31 + G4 g41 + G6 g61 + G9 g91 ) w1 + 

    ( G10 g102 + G2 + G5 g52 + G7 g72 + G8 g82 + G9 g92 ) w2 + 

       ( G10 g103b + G3 + G4 g43b + G6 g63b + G7 g73b + G9 g93b ) w3 + 

       ( G10 g104b + G4 + G6 g64b + G7 g74b + G8 g84b + G9 g94b ) w4 + 

       ( G10 g105b + G5 + G6 g65b + G7 g75b + G8 g85b + G9 g95b ) w5 + 

( G6 + G9 g96b ) w6 + ( G10 g107b + G7 ) w7 

and w3 = {{0.,0.,0.},{0.,0.,0.},{0.,0.,0.}}, w5 = {{0.,0.,0.},{0.,0.,0.},{0.,0.,0.}} then these terms as:  

(G10 g103b+G3+ G4 g43b + G6 g63b + G7 g73b + G9 g93b )w3 ={{0.,0.,0.},{0.,0.,0.},{0.,0.,0.}} 

(G10 g105b +G5 + G6 g65b + G7 g75b + G8 g85b + G9 g95b)w5 ={{0.,0.,0.},{0.,0.,0.},{0.,0.,0.}} 

Case 1:  

w6 = 0 and w7 = 0 when sa sb sc and wa wb wc 

where  

0 = {{0.,0.,0.},{0.,0.,0.,},{0.,0.,0.}} 

Enter any random numbers of Sij and Wij from [ -1, 1 ] as follows: 
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Sij = อ
0.55 0.0 0.0
0.0 0.45 0.0
0.0 0.4 0.6

อ 

Wij= อ
0.0 0.4 0.6
0.6 0.7 0.0
0.6 0.7 0.0

อ 

1. Using the method two to calculate the anisotropy tensor, then find the numerical results as 

bij = ( G1 + G10 g101 + G3 g31 + G4 g41 + G6 g61 + G9 g91 ) w1 + 

   ( G10 g102 + G2 + G5 g52 + G7 g72 + G8 g82 + G9 g92 ) w2 + 

      ( G10 g103b + G3 + G4 g43b + G6 g63b + G7 g73b + G9 g93b ) w3 + 

      ( G10 g104b + G4 + G6 g64b + G7 g74b + G8 g84b + G9 g94b ) w4 + 

    ( G10 g105b + G5 + G6 g65b + G7 g75b + G8 g85b + G9 g95b ) w5 

and the numerical results of L1, L2, L3, L4, and L5 as follows: 

     L1 = G1 + G10 g101 + G3 g31 + G4 g41 + G6 g61 + G9 g91 = - 0.366932 

     L2 = G10 g102 + G2 + G5 g52 + G7 g72 + G8 g82 + G9 g92= - 0.380989 

       L3 = G10 g103b + G3 + G4 g43b + G6 g63b + G7 g73b + G9 g93b= - 2.34177 

          L4 = G10 g104b + G4 + G6 g64b + G7 g74b + G8 g84b + G9 g94b= - 0.00702823 

       L5 = G10 g105b + G5 + G6 g65b + G7 g75b + G8 g85b + G9 g95b = - 2.77578 

The anisotropy tensor bij is: 

bij = อ
െ0.370838 െ0.154602 െ0.21923
െ0.154602 0.0155636 0.517174
െ0.21923 0.517174 0.355275

อ 

2. Using the method one to calculate the anisotropy tensor, to find the matrices Aij, Hij, and Jij after that taking the 
inverse matrix Aij, only the first column of its elements are the solutions of the scalar function L1, L2, L3, L4, and L5 
as follows: 

L1 = - 0.366932 

L2 = - 0.380989 

                                       L3 = - 2.34177 

  L4 = - 0.00702823 

                                       L5 = - 2.77578 

Thus, the solution of the anisotropy tensor bij is: 

bij = L1 w1 + L2 w2 + L3 w3 + L4 w4 + L5 w5 

bij = อ
െ0.370838 െ0.154602 െ0.21923
െ0.154602 0.0155636 0.517174
െ0.21923 0.517174 0.355275

อ 

3. The numerical results for the anisotropy tensor of Gatski and Speziale as 

bij = G1 T1 + G2 T2 + G3 T3 + G4 T4 + G5 T5 + G6 T6 + G7 T7 + G8 T8 + G9 T9 + G10 T10 

bij = อ
െ0.370838 െ0.154602 െ0.21923
െ0.154602 0.0155636 0.517174
െ0.21923 0.517174 0.355275

อ 

4. To compare the present numerical results by using the method one and the method two with the numerical 
results of Gatski and Speziale, it can be seen that three of them have exactly the same numerical result for the 
anisotropy tensor. 

Case 2: w3=0 and w5=0 when sa=sb or sb=sc or sa=sc and wa wb wc 

where  

0 = {{0.,0.,0.},{0.,0.,0.,},{0.,0.,0.}} 
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Enter any random numbers of Sij and Wij from [ -1, 1 ] as follows: 

Sij = อ
0.5 0.0 0.0
0.0 0.5 0.0
0.0 0.0 െ1

อ 

Wij = อ
0.0 െ2 5⁄ 3 7⁄
2 5⁄ 0.0 െ3 4⁄
െ3 7⁄ 3 4⁄ 0.0

อ 

1. Using the method two to calculate the anisotropy tensor, the numerical results as 

bij = ( G1 + G10 g101 + G3 g31 + G4 g41 + G6 g61 + G9 g91 ) w1 + 

   ( G10 g102 + G2 + G5 g52 + G7 g72 + G8 g82 + G9 g92 ) w2 + 

      ( G10 g104b + G4 + G6 g64b + G7 g74b + G8 g84b + G9 g94b ) w4 + 

( G6 + G9 g96b ) w6 + G7 w7 

and the numerical results of L1, L2, L4, L6, and L7 as follows: 

L1 = G1 + G10 g101 + G3 g31 + G4 g41 + G6 g61 + G9 g91= - 0.407073 

L2 = G10 g102 + G2 + G5 g52 + G7 g72 + G8 g82 + G9 g92= - 0.446724 

    L4 = G10 g104b + G4 + G6 g64b + G7 g74b + G8 g84b + G9 g94b= - 0.0144359 

        L6 = G6 + G9 g96b= - 0.703069 

L7 = G7= 0.351534 

The anisotropy tensor bij is: 

bij ൌ อ
െ0.434091 െ0.0812456 െ0.121203
െ0.0812456 0.0270173 0.597408
െ0.121203 0.597408 0.407073

อ 

2. Using the method one to calculate the anisotropy tensor, to find the matrices Aij, Hij, and Jij after that taking the 
inverse matrix Aij, only the first column of its elements are the solutions of the scalar function L1, L2, L4, L6 and L7 
as follows: 

L1 = - 0.407073 

L2 = - 0.446724 

 L4 = - 0.0144359 

L6 = - 0.703069 

                                       L7 = 0.351534 

Thus, the solution of the anisotropy tensor bij is: 

bij = L1 w1 + L2 w2 + L4 w4 + L6 w6 + L7 w7 

bij =อ
െ0.434091 െ0.0812456 െ0.121203
െ0.0812456 0.0270173 0.597408
െ0.121203 0.597408 0.407073

อ 

3. The numerical results for the anisotropy tensor of Gatski and Speziale as 

bij = G1 T1 + G2 T2 + G3 T3 + G4 T4 + G5 T5 + G6 T6 + G7 T7 + G8 T8 + G9 T9 + G10 T10 

bij =อ
െ0.434091 െ0.0812456 െ0.121203
െ0.0812456 0.0270173 0.597408
െ0.121203 0.597408 0.407073

อ 

4. To compare the present numerical results by using the method one and the method two with the numerical 
results of Gatski and Speziale, it can be seen that three of them have exactly the same numerical result for the 
anisotropy tensor. 
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5. Discussion of the Present Research  

The present numerical results are compared with the experimental data of Tavoularis & Corrsin (1981) and the 
other results. From these results, it is clear that: 

1). The numerical results of present research are far better than the other results. 

2). The numerical results of present research are close to the experiment data, with an error of approximately 2 to 3 
percent.     

3). The results of FLT model is better than the other methods and very close with the experimental data and the 
present research. 

4). The results of RK model is also better and very close with the results of FLT model, the present research, and 
the experimental data. 

5). It is clear from these results that the present research has excellent results and very close to the experimental 
data. 

The comparatively good predictions obtained from the second order closures are largely due to the fact that the 
production and Coriolis terms in equation (3.44), which make a major contribution in determining the structure of 
rotating shear flow, are accounted for exactly. However, like the other existing second order closures, it does not 
yield accurate results when there is both shear and rotation, the development of significantly improved models 
based on invariance arguments and dynamical systems approach will be subject in future research. 

At the present time there are many variations of second order closure turbulence models available. However there 
is no unique turbulence model exists which can predict satisfactorily all turbulence flows. Each turbulence model 
applies successfully to some turbulent flows, but predicts unsatisfactorily to others.  

6. Conclusion 

The modern development of turbulence modeling began in the 1940s and 1950s, and the applications of second 
order turbulence modeling began in the 1960s when computer became available to handle the computations that 
required using the advanced turbulence models (Taulbee, 1992; Johansson & Wallin, 1996). In the 1970s, the 
applications of turbulence modeling became very popular; however, most of the applications and calculations were 
two dimensional (Abid & Speziale, 1992). In the 1980s, the computations and applications have been extended to 
three dimensional problems and the use of more turbulence models, many of them were based on the Reynolds 
stress models (Ching-Jen & Shenq-yuh, 1997). Although there are other approaches of turbulence modeling, but 
the most popular trend at the present time and in the future is the Reynolds stress model with its applications and 
computations (Wilcox, 1993). Each application of turbulence models is successfully to some turbulent flows, but 
predicts unsatisfactorily to others. 

The explicit algebraic Reynolds stress models of the present research for three dimensional turbulent flows in non 
inertial frames have been obtained from the second order closure models that involve seven tensor polynomial 
groups with six independent invariants. The anisotropy tensor of the present research looks complicated but easy to 
use and apply because it requires less computational times. 

This present research only used 49 terms to calculate for the anisotropy tensor while Gatski and Speziale model 
used 100 terms to calculate the anisotropy tensor. The present results of the explicit algebraic Reynolds stress 
models can apply and predict the turbulent flows by leading to second order closures in the applications and 
calculations of turbulent flows.  
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