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Abstract 

This paper describes a nonlinear rheological model consisting of a modified and extended classical Voigt model 
for predicting the time dependent deformation of a variety of viscoelastic materials exhibiting elastic, viscous 
and inertial nonlinearities simultaneously. The usefulness of the model is illustrated by numerical examples. 
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1. Introduction  

In viscoelasticity, mathematical models are required for studying the time dependent properties of materials 
under various loading conditions. In the characterization of materials, the well known established linear theory of 
viscoelasticity is only valid for small deformations or low stresses. When the material undergoes large 
deformations the linear theory becomes inapplicable, and nonlinear models are needed. Contrary to the linear 
theory of viscoelasticity that is usually described in the Boltzmann single integral or in the differential form, a 
standard framework does not exist in nonlinear viscoelasticity. Therefore, nonlinear mathematical rheological 
models are often constructed by through modifications and extensions to higher order stress or strain terms of the 
linear theory. From a mathematics point of view, the integral representation of viscoelastic constitutive equation 
is more difficult to perform than the differential form. Thus, several models with various complexities have been 
developed for describing the nonlinear behavior of these materials that are characterized by elastic, viscous and 
inertial nonlinear contributions (Bauer et al. 1979; Bauer 1984). However, in these models, due to the 
mathematical complications, only the elastic or viscous nonlinearity is often taken into account (Monsia 
2011a,b,c) and the inertial contribution is ignored. Moreover, there are only a few theoretical models formulated 
with constant-value rheological material parameters. Therefore, nonlinear models with constant rheological 
coefficients are required. Following this viewpoint, by using a second-order elastic spring in series with a 
classical Voigt element, that is an extended form of the standard linear solid to finite strains, Monsia (2011a) 
formulated a hyperlogistic-type equation to reproduce the nonlinear time dependent stress response of some 
viscoelastic materials. Recently, in Monsia (2011b), a single differential constitutive equation derived from a 
standard nonlinear solid model consisting of a polynomial elastic spring in series with a classical Voigt element 
for the prediction of time dependent nonlinear stress of a class of viscoelastic materials is developed. More 
recently, in Monsia (2011c), a nonlinear four-parameter rheological Voigt model consisting of a nonlinear Voigt 
model in series with a classical linear Voigt element with constant material coefficients for representing the 
nonlinear stiffening response of the initial low-load portion and the softening behavior of some viscoelastic 
materials is formulated. In Monsia (2011d) the elastic and viscous nonlinearities are taken simultaneously into 
consideration through a simple nonlinear generalized Maxwell fluid model consisting of a nonlinear spring 
connected in series with a nonlinear dashpot obeying a power law with constant material coefficients. According 
to Bauer (1984), suitable constitutive equations of viscoelastic materials must relate stress, strain and their higher 
time derivatives, to say, must take into consideration the elastic, viscous and inertial nonlinearities 
simultaneously. To overcome the mathematical complexities in viscoelastic modeling, Bauer (1984) developed, 
for a complete characterization of rheological properties of arterial walls, a theory based on the classical Voigt 
model. The Bauer’s theory (1984) is aimed to give satisfactorily and simultaneously account of strong elastic, 
viscous and inertial nonlinearities characterizing a viscoelastic material. The method consists essentially to 
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decompose the total stress exciting the material as the sum of three components, that is to say, the elastic, viscous 
and inertial stresses and to express the pure elastic stress as a nonlinear function of deformation. The pure 
viscous and inertial stresses are then formulated as a first and second time derivatives of a similar function of 
deformation to the nonlinear elastic function, respectively. A fundamental theoretical difficulty in the use of the 
Bauer’s theory (1984) consists of the determination of appropriate nonlinear elastic restoring force function that 
tends towards the expected linear elastic behavior for small deformations. In the Bauer’s study (1984), the pure 
elastic stress is expanded in a power series of strain, the pure viscous stress is developed as a first time derivative 
of a similar power series of strain, and the pure inertial stress is expressed as a second time derivative of a 
similar power series of strain. The Bauer’s stress decomposition method (1984), consisting to express the stress 
as a sum of three elementary stresses, has been after used by many authors (Armentano et al. 1995; Gamero et al. 
2001) for a complete characterization of arterial behavior. Recently, Monsia (2011e), using the Bauer’s method 
(1984), developed a hyperlogistic equation that is useful for representing the time dependent behavior of some 
viscoelastic materials. In Monsia (2011e), following the Bauer’s theory (1984), the pure elastic stress is 
developed in an asymptotic expansions in powers of deformation, the pure viscous stress is expressed as a first 
time derivative of a similar asymptotic expansions in powers of deformation, and the inertial stress is formulated 
as a second time derivative of a similar asymptotic expansions in powers of deformation.  

In this work, using a hyperbolic function of deformation for the pure elastic constitutive relationship, we 
developed following the Bauer’s theory (1984) a one-dimensional nonlinear theoretical rheological model with 
constant material coefficients taking into account all together elastic, viscous and inertial nonlinearities 
characterizing viscoelastic materials. The theoretical obtained results show that the model can be successfully 
applied to represent the nonlinear time deformation of some viscoelastic materials. Numerical examples are 
performed to illustrate the effects of rheological parameters action on the material response.  

2. Formulation of the Mathematical Model 

2.1 Theoretical considerations 

In this part we develop the governing equations including the elastic, viscous and inertial nonlinearities with 
material constant coefficients. Most viscoelastic materials exhibit elastic, viscous and inertial nonlinearities, so 
that their mechanical responses are nonlinear time dependent, and require advanced mathematical models for 
their description. To that end, the use of nonlinear viscoelasticity is suggested (Bauer 1984). To construct then 
our proposed one-dimensional rheological model, in which the stresses and strain are scalar functions, we will 
use the Bauer’s theory (1984) that brings significant modifications and extensions to the classical mechanical 
Kelvin-Voigt model for overcoming the preceding mentioned difficulties. The first significant modification 
herein consists to introduce a nonlinear restoring spring force function )(  of deformation   for capturing 
the pure elastic component of the stress induced in the material studied. Then, for a general formulation, the pure 
elastic constitutive equation may be written in the form   

)( ae                                          (1) 

where a is a stiffness coefficient. The second important modification involves the fact that the pure nonlinear 
viscous constitutive equation is then directly given by  

 )( b
dt

d
v                                       (2) 

where b is a viscosity module. The third significant modification consists to derive from )(  the nonlinear 
inertial stress component as 

 )(
2

2

 c
dt

d
i                                     (3) 

in which c is an inertia module. The coefficients a, b and c are time independent material parameters. Thus, noting 
σt the total stress due to the external exciting force acting on the material, the superposition of elastic stress, viscous 
stress and inertial stress is given by 
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where the dot over the symbol denotes a differentiation with respect to time and the inertial module c is different 
from zero. Equation (4) determines the differential constitutive relationship between the total external stress σt and 
the resulting strain )(t  for a given nonlinear function )( . It is required, at this stage of the model-building, to 
specify the nonlinear function )( . In this paper, the nonlinear spring force function )( is chosen as the 
following hyperbolic law 

1
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
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
                                            (5) 

Thus, using Equation (5), Equation (4) may be written as 
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Equation (6) denotes a second-order nonlinear ordinary differential equation in )(t  for a given total stress σt.  

2.2 Dimensionalization 

Noting that the strain )(t  is a dimensionless quantity, the above material parameters used in Equation (6) 
have then the following dimensions. Noting also M, L and T the mass, length and time dimension respectively, the 
dimension of the stress becomes ML-1T-2. Therefore, the dimension of a is given by ML-1T-2, that of b varies as 
ML-1T-1, and that of c varies as ML-1 (mass per unit length). 

2.3 Solution using a stress 0t  

2.3.1 Evolution equation of the deformation )(t  

In the absence of external exciting stress ( 0t ), the internal dynamics of the viscoelastic material studied 
can be represented by the following nonlinear ordinary differential equation 
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where 
c

b
 , and 

c

a
o 
2 .   

Equation (7) represents the time dynamics equation of the strain )(t  induced in the material under the external 
exciting stress fixed to zero. By introducing the auxiliary variable  

1x                                            (8) 
Equation (7) transforms, after some algebraic manipulations, into 
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In Equation (9), the first term is proportional to the basic inertial stress, the second to a nonlinear quadratic viscous 
stress, the third term to the linear viscous stress, the fourth term to the classical linear elastic stress and the last term 
to a quadratic nonlinear elastic stress. Equation (9) is a Lambert-type differential equation which can be 
analytically solved by using an appropriate change of variable and suitable boundary and initial conditions that 
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satisfy the time dynamics of the viscoelastic material considered. 

2.3.2 Solving time dependent deformation equation 

For solving Equation (9), a novel change of variable is required. Making the following substitution 

1 yx                                            (10) 

with 0y , Equation (9) transforms, after a few algebraic manipulations as 

22
oo yyy                                        (11) 

Equation (11) is the well-known second-order linear ordinary differential equation with a right-hand member 
different from zero. Integration yields for )(ty  the following solution 

1)exp()exp()( 2211  trAtrAty                        (12) 
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A1 and A2 are two integration constants determined by the initial conditions. Thus, using the suitable initial 
conditions 
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where the coefficient of denotes the initial strain rate, and taking into consideration Equation (8) and Equation (10), 
the desired strain versus time relationship can be written as 
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(13) 

Equation (13) describes mathematically the time dependent strain in the viscoelastic material under study. It 
predicts the strain versus time relationship of the material studied as a hyper-exponential type function that 
asymptotically approaches a maximum value with increasing time. 
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3. Numerical Results and Discussion  

In this section some numerical examples are performed to illustrate the predictive quality of the model for 
representing the mechanical behavior of the material considered and the influence of rheological coefficients 
action on the material response. 

Since viscoelastic materials are characterized by high elastic, viscous and inertial nonlinearities, advanced 
analytical formulations are needed for determining and predicting accurately their properties. In this regard the 
Bauer’s theory (1984) becomes an important mathematical tool in viscoelastic modeling. For the present model, 
the nonlinear restoring spring force function is expressed as a hyperbolic law. The hyperbolic law has been 
extensively used in soils constitutive modeling. The hyperbolic function proposed here is inspired by the work 
(Prevost and Keane 1990). This law gives the advantage to be an exact analytical expression, compared with the 
asymptotic series used in Monsia (2011e). Moreover, the choice of Equation (5) proceeds from the fact that when 

1 ,  Equation (5) reduces to a geometric series formula, so that for small deformations, )( shows linear 
behavior as expected. In this respect, the proposed hyperbolic law agrees well with the power series of deformation 
used by Bauer (1984). Another feature that involves the advantage of Equation (5) is that )( becomes infinite 
force for a finite deformation , that is, for 1 , in other words, for a strain range of about 100 %, like the 
nonlinear elastic FENE (Finitely Extensible Nonlinear Elastic) spring force, contrary to polynomial restoring force 
in which the deformation   should tend also towards infinity. For  , that is, for 1 , )( tends 
towards a finite value. By applying the Bauer’s theory (1984) and using the preceding hyperbolic restoring force 
function, the governing equation obtained is a Lambert-type nonlinear differential equation. By considering then 
suitable change of variable and initial conditions, this equation led to obtain the time versus strain relationship as a 
hyper-exponential type function, demonstrating that the present model is applicable to represent mathematically 
the mechanical behavior of a variety of viscoelastic materials. However, more experimental results are required to 
further verify the feasibility of the model.  

4. Conclusions 

A nonlinear rheological model with constant material coefficients, taking into account all together elastic, 
viscous and inertial nonlinearities, is developed. The theoretical obtained results showed that the model can be 
successfully applied to represent the nonlinear time deformation behavior of some viscoelastic materials. 
Numerical results illustrated also the effects of rheological parameters action on the deformation response of the 
material studied, and particularly the sensitivity of the model to the initial rate of application of the strain. The 
present uniaxial model can act as a starting point to a more general three dimensional model, but this study will 
be done as future work.  
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Figure 1. Typical strain versus time curve 

Figure 1 shows the typical time versus strain variation with an increase until a maximum value, obtained from 
Equation (13) with the fixed value of parameters at 2 , 5.0o , 1of . It can be seen from Figure 1 that the 
proposed model is able to reproduce mathematically and accurately the typical exponential deformation response 
of a variety of viscoelastic materials, for example, soft living tissues (Lesecq et al., 1997). The model predicts a 
time dependent response in which the slope declines gradually with increasing time until the failure point at which 
the slope reduces to zero. 

 

Figure 2. Strain versus time curves showing the effect of the coefficient   

Figure 2, 3 and 4, illustrates the effects of material coefficients on the time dependent strain response of the 
material studied. These effects are studied by varying one coefficient while the other two are kept constant. Figure 
2 exhibits the effect of the damping coefficient λ change on the strain-time relationship. The graph shows that an 
increasing λ, reduces the value of the strain on the time period considered. The slope also decreases with increase λ. 
The red line corresponds to 2 , the blue line to 3 , and the green line to 4 . The other parameters are 

5.0o , 1of . 
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Figure 3. Strain-time curves at three various values of coefficient o  

As shown in Figure 3, an increase of the natural frequency coefficient o , decreases also the value of the strain on 

the time period considered. The slope decreases slowly in the early periods of time with increase o . The red line 

corresponds to 5.0o , the blue line to 1o , and the green line to 5.1o . The other parameters are 4 , 

1of .  

 
Figure 4. Strain-time curves for three different values of the parameter of  

Figure 4 exhibits how the initial rate of application of the strain of  affects the time dependent response of the 

material studied. The graph shows that the curves become more linear with decreasing of . The slope decreases 

also with decreasing of . The red line corresponds to 01.0of , the blue line to 1.0of , and the green line to 

1of . The other parameters are 2 , 5.0o . 


