
Mechanical Engineering Research; Vol. 3, No. 2; 2013 

ISSN 1927-0607   E-ISSN 1927-0615 

Published by Canadian Center of Science and Education 

13 

 

Numerical Investigation of Heat Transfer and Fluid Flow 

Characteristics Inside Wavy Channels Fully Filled With Porous Media 

Fahad Sabah Al-Gburi1 & Amir Sultan Dawood1 

1 Mechanical Engineering Department, Collage of Engineering, Mosul University, Mosul, Iraq 

Correspondence: Fahad Sabah Al-Gburi, Mechanical Engineering Department, Mosul University, Mosul, Iraq. 

Tel: 964-770-278-2918. E-mail: fahad_sabah2001@yahoo.com, fahadsabah88@gmail.com 

 

Received: May 20, 2013     Accepted: June 24, 2013    Online Published: July 15, 2013 

doi:10.5539/mer.v3n2p13        URL: http://dx.doi.org/10.5539/mer.v3n2p13 

 

Abstract 

The combined effect of waviness and porous media on the convection heat transfer and fluid flow characteristics 

is numerically investigated. Two models of wavy walled channel fully filled with homogenous porous material 

are assumed. The first was the symmetric converging-diverging channel (case A), and the second was the 

channel with concave-convex walls (case B). The governing equations have been solved on non-orthogonal grid, 

which is generated by Poisson elliptic equations, based on ADI method. Nusselt number values are used to 

indicate whether any cases of corrugation studied may have led to an increase in the rate of heat transferred 

compared with the planar surface channel which is the purpose of the study. The results show that case A gives 

more enhancement in heat transfer than case B. However, the thermal performance of the wavy channels (cases 

A & B) is better than the straight channel (simple duct). 

Keywords: porous media, wavy channels, separation, elliptic grid generation, forced convection, non-darcian 

flow 

 

Nomenclature Greek symbols 

cp Specific heat, J ∙ kg−1 ∙ K 𝛼 Thermal diffusivity, m2 ∙ s−1 

𝐷𝑎 Darcy number 𝜃 Dimensionless temperature 

F Form-drag constant 𝜇 Dynamic viscosity, Pa ∙ s 

H Channel width (characteristic length), m 𝜈 Kinematic viscosity, m2 ∙ s−1 

h Wavy amplitude, m 𝜉, 𝜂 Computational region coordinates 

k Thermal conductivity, W ∙ m−1 ∙ K−1 𝜌 Density, kg ∙ m3 

K Permeability of porous medium, m2 𝜙 Porosity of porous medium 

𝑁𝑢𝑥 Local Nusselt number 𝜓 Stream function, m2 ∙ s−1 

𝑁𝑢 Average Nusselt Number 𝜔 Vorticity, s−1 

p Pressure, Pa   

𝑃𝑟 Prandtl number Subscripts 

𝑅𝑒 Reynolds number f fluid 

T Temperature, K h Hot surface 

𝑢 Horizontal velocity component, m ∙ s−1 in Inlet condition 

𝑢° Inlet velocity, m ∙ s−1   

𝑣 Vertical velocity component, m ∙ s−1 Accents 

|𝑉| Velocity magnitude = (u2 + v2)0.5, m ∙ s−1 T̂ Non-dimensional 
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1. Introduction 

Heat and mass transfer through porous media is an important development and an area of very rapid growth in 

contemporary heat transfer researches; because of its existence in many diverse applications such as 

ground-water hydrology, production of oil and gas from geological structures, the gasification of coal, 

geothermal operations, packed-bed chemical reactors, surface catalysis of chemical reactions, filtration, 

adsorption, drying, compact heat exchangers and many more. Many researchers interested with enhancing heat 

transfer rate by using porous media. Hadim and North (2005) presented a numerical investigation of 

two-dimensional laminar forced convection in a sintered porous channel with inlet and outlet slots. They studied 

the effects of the particle diameter, particle Reynolds number, and channel dimensions on flow and heat transfer. 

They developed length-averaged Nusselt number and friction factor correlations for efficient design of a porous 

metal heat exchanger. Mohammad (2003) numerically investigated heat transfer enhancement for a flow in a 

pipe and a channel fully or partially filled with porous medium. The effects of porous layer thickness on the rate 

of heat transfer and pressure drop were investigated. He mentioned that partially filling the conduit with porous 

medium enhances the rate of heat transfer. Van der Sman (2002) tested the validity of the 

Darcy-Forchheimer-Brinkman (DFB) theory of flow through confined porous media using experimental data of 

pressure drop and velocity correlations which are describing the airflow through a vented box packed with 

horticultural produce. His Results show that the DFB model can reproduce experimental data on pressure drop 

quite accurately. Angirasa (2002) presented an experimental investigation to demonstrate the heat transfer 

enhancement with metallic fibrous heat dissipaters. He concluded that the metallic porous heat dissipaters can 

achieve substantial heat transfer augmentation when compared to flat plate. Kim et al. (2001) presented an 

experimental study to investigate the impact of the presence of aluminum foam on the flow and convective heat 

transfer in an asymmetrically heated channel. They presented a simple correlation of the friction factor and the 

average Nusselt number of aluminum foams will be sought to provide a guide in practical applications. Kaviany 

(1985) developed a numerical work to investigate the fluid flow and heat transfer characteristics due to laminar 

flow between two isothermal parallel plates. His results show that Nusselt number for fully-developed fields 

increases with an increase in porous media inside the channel, while the pressure drop associated with the 

entrance region decreases. Vafai and Tien (1981) numerically analyzed the effects of the solid boundary and the 

inertial forces on flow and heat transfer in porous media attached over flat plate. Their results show that these 

effects are more pronounced in highly permeable media, high Prandtl number, large pressure gradients, and in 

the region close to the leading edge of the flow layer. 

The geometrical shape of the channel walls is also one of great importance in enhancing heat transfer. The 

waviness is a special case of corrugation that can be used to promote heat transfer. Xei et al. (2007) numerically 

studied the effects of wavy heights, lengths, wavy pitches and channel widths of a wavy channel on fluid flow 

and heat transfer characteristics. The results showed that the heat transfer may be greatly enhanced due to the 

wavy characteristics. Wang and Chen (2002) had numerically studied the effects of the wavy geometry, Reynolds 

number and Prandtl number on the skin-friction and Nusselt number for flow through a sinusoidal curved 

converging–diverging channel. Their results showed that the amplitudes of Nusselt number and the skin-friction 

coefficient curves increase as Reynolds number and the amplitude–wavelength ratio increase. Russ and Beer 

(1997a, 1997b) numerically and experimentally studied the heat and mass transfer for a wide range of Reynolds 

numbers from laminar to turbulent flow in a pipe of a wavy surface. Their results showed that frictional loss 

increases with the increase of amplitude for the same Reynolds number. Moreover, a maximum value of Nusselt 

number was determined near the reattachment point of the flow in the converging part of the wave. Tanda and 

Vittori (1996) presented a numerical study for fully developed flow and heat transfer in a wavy channel. Their 

results showed that The position of the local heat transfer coefficient is sensitive to Reynolds and Prandtl 

numbers and to the geometric parameters of the wall waviness. Stone and Vanka (1996) have presented an 

accurate numerical scheme to solve the unsteady flow and heat transfer equations in a wavy passage. They 

observed that the flow is steady in part of the channel and unsteady in the rest of it. Also, as Reynolds number is 

progressively increased, the unsteadiness is onset at a much earlier location, accompanied by increased overall 

heat transfer and friction coefficients. Saniei and Dini (1993) experimentally studied the heat transfer 

characteristics due to turbulent flow conditions in a wavy-wall channel containing from seven waves. They 

concluded that the local Nusselt number has the highest magnitude on the second wave.  

Based on the reported importance of using porous media in a hand, and using corrugated surfaces on the other 

hand, in improving and increasing the heat transfer, the present work integrates these two ideas and numerically 

investigates their combined effect on the nature of the flow and heat transfer by forced convection. So, this study 

assumed two models of wavy walled channel, fully filled with homogenous porous material. The first was the 



www.ccsenet.org/mer Mechanical Engineering Research Vol. 3, No. 2; 2013 

15 

 

symmetric converging-diverging channel (case A), and the second was the channel with concave-convex walls 

(case B) (see Figure 1). Nusselt number values are used to indicate whether any cases of corrugation studied may 

have led to an increase in the rate of heat transferred compared with the planar surface channel which is the 

purpose of the study. 

 

Figure 1. Models of wavy channels. (a) Symmetric converging-diverging channel, (b) Channel with 

concave-convex walls 

 

 

Figure 2. Schematic configuration of the physical model of the present study 

 

2. Mathematical Formulation 

In this study, a schematic configuration of the physical model, which is a two-dimensional wavy channel, is 

illustrated in Figure 2. This channel is completely filled with porous material and divided into three regions. The 

first is the entrance region of length (𝐿𝑖 = 10𝐻), the second is the wavy-walled region of length (𝐿𝑚 = 10𝐻) 

whereas the last is the exit region of length (𝐿𝑒 = 5𝐻). The following equations respectively define the coordinates 

of the upper and lower surfaces: 

𝑦𝐿 = {

0                                              𝑥 ≤ 𝐿𝑖

ℎ ∙ 𝑠𝑖𝑛
2𝜋 ( 𝑥− 𝐿𝑖 )

𝜆
            𝐿𝑖 ≤ 𝑥 ≤  𝐿𝑖 + 𝐿𝑚

0                                𝑥 ≥  𝐿𝑖 + 𝐿𝑚

                       (1) 

𝑦𝐷 = {

𝐻                                                     𝑥 ≤ 𝐿𝑖

𝐻 ± 𝑦𝐿                              𝐿𝑖 ≤ 𝑥 ≤  𝐿𝑖 + 𝐿𝑚

𝐻                                           𝑥 ≥  𝐿𝑖 + 𝐿𝑚

                     (2) 

Where ℎ and 𝜆 have a constant values in the current study for the two models (A & B). Their values are 

(ℎ = 0.25𝐻) and (𝜆 = 5 3⁄ 𝐻) respectively.    

This study considered steady state, incompressible, laminar, and two-dimensional flow. Also, it assumed 

homogeneous and isotropic sintered porous medium. The minimal temperature is that of the fluid at the inlet 

section (𝑇𝑖), whereas the maximal one is of the channel walls (𝑇ℎ). The fluid and the solid matrix are in local 

thermal equilibrium and viscous dissipation was neglected. The thermo-physical properties are assumed to be 

constant for the fluid (air) and the solid matrix. 

According to the above considerations and assumptions, the governing equations will be as the followings (Vafai 

& Tien, 1981):   
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Continuity 

(3) 

Momentum 

  (4)
 

and 

   (5) 

Energy 

         (6) 

Where 𝐾 and 𝜙 are the permeability and porosity of the porous structure, and 𝐹 is a dimensionless form-drag 

constant, which is evaluated by using the widely used empirical correlation (Hadim & North, 2005):  

                (7) 

The dimensionless forms have been rendered for the quantities with respect to the characteristic length (𝐻), and the 

characteristic velocity (𝑢°) as the following: 

𝑥̂ =  
𝑥

𝐻
 , 𝑦̂ =  

𝑦

𝐻
 , 𝜃 =  

𝑇 − 𝑇𝑖

𝑇ℎ − 𝑇𝑖
 , 𝑢̂ =  

𝑢

𝑢°
 , 𝑣̂ =  

𝑣

𝑢°
 , 

     (8)
 

In this study, the pressure terms in Equations (4) and (5) had been eliminated by differentiating these equations 

with respect to 𝑦 and 𝑥 respectively, and then subtracting one of them from the other. By using the dimensionless 

groups (8), the following equations will be the final form of the governing equations in terms of voricity-stream 

function formula: 

  (9) 

   (10)
 

   (11)
 

Where 

  (12) 

The boundary conditions must be specified to solve the partial differential equations, which govern the model of 

study. No slip condition is considered at the solid walls (top and bottom). The flow over the cross-section at the 

inlet of the channel has uniform velocity (𝑢°), whereas at the outlet section is fully developed. Thus, the 

dimensionless boundary conditions will be: 

1) At the inlet section: 

𝑢̂ = 𝑢̂° = 1  , 𝑣̂ = 0  , 𝜓̂ = 𝑢̂°. 𝑦̂ = 𝑦̂  , 𝜔̂ = 0 , 𝜃 = 0 

2) At the outlet section: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 

𝜌𝑓

𝜙2
 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
 = −

𝜕𝑝

𝜕𝑥
−

𝜇𝑓

𝐾
𝑢 −

𝜌𝑓 .𝐹

 𝐾
 𝑢2 + 𝑣2 . 𝑢 + 

𝜇𝑓

𝜙
 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
                           … (4) 

𝜌𝑓

𝜙2
 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
 = −

𝜕𝑝

𝜕𝑦
−

𝜇𝑓

𝐾
𝑣 −

𝜌𝑓 . 𝐹

 𝐾
 𝑢2 + 𝑣2 . 𝑣 + 

𝜇𝑓

𝜙
 
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
                           … (5) 

𝑢 .
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑓  .  

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
                                                                  … (6) 

𝐹 =
1.75

 150𝜙1.5
                                                                                 … (7) 

𝑝 =
𝑝

𝜌𝑓𝑢°
2

 , 𝑃𝑟 =  
𝜇𝑓𝐶𝑝𝑓

𝑘𝑓

 , 𝑅𝑒 =  
𝑢° 𝐻

𝑣𝑓

 , 𝐷𝑎 =
𝐾

𝐻2
                                          … (8) 

𝜔̂ = − ∇̂2𝜓̂                                                                             … (9) 

1

∅
 𝑢̂.

𝜕𝜔̂

𝜕𝑥
+ 𝑣

𝜕𝜔̂

𝜕𝑦
 =

1

𝑅𝑒
∇̂2𝜔̂ −

∅

𝑅𝑒𝐷𝑎
. 𝜔̂ −

∅𝐹

 𝐷𝑎
 𝑉̂ 𝜔 +

∅𝐹

 𝐷𝑎
 𝑢̂

𝜕 𝑉̂ 

𝜕𝑦̂
− 𝑣

𝜕 𝑉̂ 

𝜕𝑥
                   … (10) 

𝑢̂
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
=

1

𝑅𝑒. 𝑃𝑟
∇̂2𝜃                                                           … (11) 

𝑢̂ =  
𝜕𝜓̂

𝜕𝑦
 , 𝑣 = − 

𝜕𝜓̂

𝜕𝑥
                                                                    … (13) 
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𝜕𝑢̂

𝜕𝑥̂
= 0, 𝑣̂ = 0 ,

𝜕𝜓̂

𝜕𝑥̂
= 0 ,

𝜕𝜔̂

𝜕𝑥̂
= 0 ,

𝜕𝜃

𝜕𝑥̂
= 0 

3) At the bottom wall: 

𝑢̂ = 0, 𝑣̂ = 0  , 𝜓̂ = 0, 𝜔̂ =
𝜕2𝜓̂

𝜕𝑛̂2
 , 𝜃 = 1 

4) At the top wall: 

𝑢̂ = 0 , 𝑣̂ = 0, 𝜓̂ = 𝑢̂°. 𝐻 = 1, 𝜔̂ =
𝜕2𝜓̂

𝜕𝑛̂2
 , 𝜃 = 1 

In order to manage the irregular boundaries in the model (wavy walls), it is important to assume new coordinates 

(𝜉, 𝜂), which introduce a regular domain, instead of the original coordinates (𝑥, 𝑦). The general transformation 

from the physical domain (𝑥, 𝑦) to the computational domain (𝜉, 𝜂) is: 

     (13)
 

The governing equations are solved on a curvilinear non-orthogonal grid, which is generated by solving 

Poisson’s elliptic equation system. This system is represented by the following two equations: 

     (14)
 

     (15)
 

Middlecoff and Thomas (1980) developed a method to evaluate the values of the control functions (𝑃) and (𝑄) 

by assuming the following : 

     (16)
 

     (17)
 

Where the parameters Φ and Ψ are evaluated as follows: 

        (18)
 

       (19)
 

Where 𝜂𝑏 and 𝜉𝑏 respectively are the values of 𝜂 and 𝜉 along the boundaries. 

Upon introducing terms P and Q from Equations (16, 17), after specifying the parameters (Φ, Ψ), the transformed 

form of Equations (14, 15) will be as the following: 

     (20) 

     (21)
 

Where  

    (22) 

    (23) 

    (24)
 

By solving the Equation systems (20, 21) numerically using Line successive over relaxation (LSOR) method 

(Petrović & Stupar, 1996), a typical grid system would be generated for the posed model like the illustrated in 

Figure 3. It is important to mention that suitable clustering functions were used in mesh generation operation in 

order to increase the density of the grid points in the regions having high steeper gradients (Petrović & Stupar, 

1996) like the furrows of the wavy surfaces. 

𝜉 = 𝜉(𝑥, 𝑦)   ,     𝜂 = 𝜂(𝑥, 𝑦)                                                         … (14)  

𝜉𝑥𝑥 + 𝜉𝑦𝑦 = 𝑃(𝜉, 𝜂)                                                                 … (15) 

𝜂𝑥𝑥 + 𝜂𝑦𝑦 = 𝑄(𝜉, 𝜂)                                                                 … (16) 

𝑃 = Φ(𝜉, 𝜂) (𝜉𝑥
2 + 𝜉𝑦

2)                                                           … (17) 

𝑄 = Ψ(𝜉, 𝜂) (𝜂𝑥
2 + 𝜂𝑦

2)                                                           … (18) 

Φ = −  
𝑥𝜉𝜉 𝑥̂𝜉 + 𝑦̂𝜉𝜉 𝑦̂𝜉

𝑥𝜉
2 + 𝑦̂𝜉

2  

𝜂=𝜂𝑏

                                                     … (19) 

Ψ = −  
𝑥𝜂𝜂 𝑥𝜂 + 𝑦𝜂𝜂 𝑦𝜂

𝑥𝜂
2 + 𝑦𝜂

2
 
𝜉=𝜉𝑏

                                                     … (20) 

𝛼 𝑥𝜉𝜉 + Φ𝑥𝜉 − 2𝛽𝑥𝜉𝜂 + 𝛾 𝑥𝜂𝜂 + Ψ𝑥𝜂 = 0                                        … (21) 

𝛼 𝑦̂𝜉𝜉 + Φ𝑦𝜉 − 2𝛽𝑦̂𝜉𝜂 + 𝛾 𝑦𝜂𝜂 + Ψ𝑦𝜂 = 0                                        … (22) 

𝛼 = 𝑥𝜂
2 + 𝑦̂𝜂

2                                                                          … (23) 

𝛽 = 𝑥𝜉𝑥𝜂 + 𝑦̂𝜉 𝑦̂𝜂                                                                      … (24) 

𝛾 = 𝑥𝜉
2 + 𝑦𝜉

2                                                                          … (25) 
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Figure 3. Poisson’s elliptic grid of the present study 

 

The local Nusselt number along the top and bottom surfaces is defined as follow: 

  (25) 

Where 𝜃𝑏 is dimensionless bulk temperature of flow inside the channel, which can be defined as follows: 

   (26)
 

So, the local Nusselt number in the computational domain will be: 

    (27)
 

Where 𝐽 denotes the Jacobian of the transformation 

   (28)
 

From Equation (23), the average Nusselt number between any two positions at the surfaces of the channel is 

defined as: 

   (29) 

3. Numerical Procedure 

3.1 Numerical Solution 

Finite differences techniques with second-order of approximation were used to solve the governing Equations 

(9-11), with specified boundary conditions, after transforming these equations from its original from in (𝑥̂, 𝑦̂) 

coordinates to (𝜉, 𝜂) coordinates. The linear algebraic equations resulting from the finite differences techniques 

were solved using the alternating direction implicit method (ADI) with relaxation factor (Petrović & Stupar, 1996), 

which is one of the iterative methods. The values of the relaxation factor are evaluated by trial and error, and its 

values were between (0.7-0.9). 

The grid size was of great importance in the validity of the results. Grid independence was verified, by running 

several different grid sets (60×350, 80×380 and 100×400) and by testing its effect on Nusselt number, to observe 

less than 2% difference between (60×350,100×400) grid sets. Thus, the grid size (60×350) was performed for all 

runs. The convergence criterion (maximum relative error in the values of the dependent variables between two 

successive iterations) in all runs was set at 10-6. Typically, 4000 iterations were required for the local variables 

(Temperature, stream function, and vorticity) to achieve the set convergence. The results are generated by the 

developed Matlab code (M-file).  

 

𝑁𝑢𝑥 = − 
𝜕𝜃

𝜕𝑛

1

1 − 𝜃𝑏

                                                                     … (26) 

𝜃𝑏 =
 𝑢̂. 𝜃. 𝑑𝑦̂

𝑦𝐷

𝑦𝐿

 𝑢̂. 𝑑𝑦
𝑦𝐷

𝑦𝐿

                                                                       … (27) 

𝑁𝑢𝑥 = −
 𝛾

𝐽(1 − 𝜃𝑏)

𝜕𝜃

𝜕𝜂
                                                              … (28) 

𝐽 = 𝐽  
𝑥, 𝑦̂

𝜉, 𝜂
 = 𝑥𝜉 𝑦̂𝜂 − 𝑥𝜂 𝑦̂𝜉                                                            … (29) 

𝑁𝑢 =  
 

𝑁𝑢𝑥

𝐽
 𝛾. 𝑑𝜉

𝜉2

𝜉1

 
1

𝐽
 𝛾. 𝑑𝜉

𝜉2

𝜉1

                                                                 … (30) 



www.ccsenet.org/mer Mechanical Engineering Research Vol. 3, No. 2; 2013 

19 

 

3.2 Code Validation  

In order to test the accuracy and validity of the numerical procedure, the algorithm of the present study has been 

tested vs. several test cases. The first was by setting the amplitude’s value of the waviness to zero and computing 

the flow characteristics inside parallel-plate channel fully filled with porous media. The computed velocity 

profile of fully developed region was compared with the corresponding analytical solution stated by Kaviany 

(1985) (see Figure 4). The second test case was by comparing the isotherms obtained by the present code with 

the case study that presented by Mohammad (2003) (see Figure 5). Finally, a comparison was performed 

between the values of the average Nusselt number at deferent values of Darcy number obtained by the current 

study and the two mentioned studies (Kaviany, 1985; Mohammad, 2003) (see Table 1). All the mentioned 

comparisons showed a good agreement.  

 

 

Figure 4. Comparison of the velocity profile between (a) Kaviany (1985), and (b) the present study for Da = 10-5 

and ∅ = 0.9 

 

 

(a) 

 

(b) 

Figure 5. Isotherms comparison between (a) Mohammad (2003), and (b) the present study 
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Table 1. Average Nusselt number validation 

Present work Mohammad (2003) Kaviany (1985) Darcy No. 

4.8875 4.8865 4.880 10−4 

4.9175 4.9190 4.915 10−5 

4.9350 4.9300 4.932 10−6 

 

4. Results and Discussions 

4.1 The Independence of Reynolds Number  

Bejan (2003) and many others like Kaviany (1985) have stated that the local Nusselt number remains constant 

for the thermally fully developed flow region inside a porous flat-walled channel. So, it is not affected by 

changing Reynolds number there, whereas this effect is clear in the entrance region. In order to determine the 

distance (𝑥), from entrance section, at which the flow thermally completes its development, it is necessary to 

conduct a study about the dependence of Nusselt number on Reynolds number in that region and at which 

distance this dependence ends. Thereby, the start section of the wavy-walled part can be estimated, and the effect 

of waviness in the surface on Nusselt number can be purely studied.  

 

 

Figure 6. Local Nusselt number distribution along the surfaces of the walls for the simple duct in different values 

of Reynolds number. Pr = 0.7 

 

It is clearly shown in Figure (6) that Reynolds number affects the values of the local Nusselt number at the 

entrance region of the channel, while this effect becomes non-existent after this region; because the flow 

becomes fully developed. Hereafter, it was possible to determine the safe value of the distance between the 

entrance of the channel and the position, beyond which the waviness will be installed and this distance was 

determined to be (𝑥 = 10𝐻). The appropriate value of Reynolds number, which gives the isotherms an obvious 

appearance especially in remote areas from the entrance, was (𝑅𝑒 =  200) for all cases of this study. 

4.2 Darcy Number Effect 

Generally, Darcy number strongly affects the growth of the hydraulic boundary layer. Decreasing the former 

significantly makes the latter forming and growing quickly. Also, the less the Darcy number, the less the 

boundary layer thickness. Figure (7) shows that the velocity profile at high Darcy numbers becomes similar to 

the profile of the flow inside non-porous channel. Moreover, going towards low Darcy numbers will reduce the 

velocity of fluid in the middle of the channel, and the contrast is taking place close to the surfaces. Thus, the 

velocity will be uniform along the distance between the upper and lower surface. In other words, the porous 

media affects the fluid flow inside the channel by homogenizing it.  
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Figure 7. The fully-developed velocity profile inside simple duct for several values of Darcy number 

 Re = 200, Pr = 0.7 

 

Increasing the velocity of the fluid adjacent to the boundaries leads to increase the convection heat transfer there. 

And this exactly is the benefit of porous medium in improving the applications required more heat transfer. 

Figure (8) shows the velocity profile of fluid in the converging part of the wavy channel at different values of 

Darcy number. In this figure, it is noticed that the fluid velocity, for low Darcy numbers, is highly greater near 

the surfaces than it in the middle. 

 

 

Figure 8. The fully-developed velocity profile inside wavy channel (Case A) in the convergent part for several 

values of Darcy number. Re = 200, Pr = 0.7 

 

In this study, the value of Darcy number was selected to be (Da = 10-5). The reason of choosing such a value is 

that it gives more heat transfer rate than the higher values. As well as, it clearly shows the effect of the porous 

medium within the region of study. On another hand, this value is more applicable than the lower values. 

4.3 Effect of Porous Media on the Separation in Flow  

Previous works like (Duoxing et al., 2009) had stated that the (Darcy–Forchheimer–Brinkman) equation 

degenerates into classical (Navier-Stokes) equation and that has the same effect at (∅ = 0.9, Re = 200, Da = 104). 

In the current study, two values of Darcy number were set (Da = 104, Da = 10-5) in order to study the influence of 

porous medium existence on the separation phenomenon. Reynolds number was set to be a low constant value 

(Re = 10). The reason of choosing such a low value is to show the vortex clearly. 

Figure 9(a) shows that the velocity of flow, adjacent to the wavy surface, is fluctuated in amount between 

maximum on peaks and minimum in bottoms. A contrary fluctuation in the amount of the local pressure 
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accompanies the fluctuation in velocity amount there. This flow behavior tends to the separation and circulation 

to occur in each furrow. The influence of the existence of porous medium can be clearly observed from Figure 

9(b). Although the fluctuation in velocity and pressure amounts is not differ between the two posed cases, the 

separation doesn’t occur and the circulation disappeared. The reason of such a behavior is that the porous 

medium dominates the fluid layers and partially prevents the influence between each neighboring ones. Thereby, 

a homogenous flow is in everywhere inside the porous medium. The relationship between the existence of 

porous medium and the circulation in flow is explicated by the streamlines in Figures 10 (a) and (b). 

It is worth to say that the porous medium is strongly analogues, in function, to the honeycomb. The latter is 

typically utilized in homogenizing fluid entered the wind tunnel. Therefore, Kaffler et. al. (2003) and several 

other studies have already modeled the flow inside honeycomb by the equations of the flow inside porous 

medium. 

 

 

(a): Da = 104 , Re =10        (b): Da = 10-5, Re =10 

Figure 9. Velocity vectors inside wavy channel (Case A) for two different values of Darcy number.Pr = 0.7 

 

 

(a): Da = 104 , Re =10                     (b): Da = 10-5, Re =10 

Figure 10. Streamlines contuors inside wavy channel (Case A) for two different values of Darcy number. Pr=0.7 

 

4.4 Flow Field 

The results of the hydrodynamic characteristics are represented by velocity vectors and streamlines contours in 

Figures 11 and 12. Figure 11(a) shows the fully-developed velocity vectors of flow inside flat plate channel. In 

this figure, the most important note is the homogeneous and semi-uniform flow along the distance between the 

walls due to the presence of porous medium. As well as, the thin thickness of the hydraulic boundary layer. 

Figure 11(b) shows the effect of waviness on the nature of flow. In this figure, it is clearly observed that the high 

drop in pressure, near the surface towards the peak, accelerates the particles of fluid increasing their kinetic 

energy. On the other hand, this drop in pressure gradually vanishes, as one is moving from the surfaces towards 

the depth, under the domination of porous medium. This vanishing in pressure is accompanied by decreasing the 

velocity variation range between the convergent and divergent parts of the channel.  
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(a). Simple duct             (b). Wavy channel ( case A ) 

 

(c). Wavy channel ( case B ) 

Figure 11. Velocity vectors of the flow for the three cases of present study. Da = 10-5, ∅ = 0.9, Re = 200, Pr = 0.7 

 

 

(a). Simple duct              (b). Wavy channel ( case A ) 

 

(c). Wavy channel (case B ) 

Figure 12. Streamlines contours of the flow for the three cases of present study. Da = 10-5, ∅ = 0.9, Re = 200,  

Pr = 0.7 
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On that basis, It is clearly noticed that the maximum velocity (at the crests) within a single velocity profile is 

close to the surface not in the middle of the channel. The main difference between the two cases of waviness (A 

& B) is that in case A there is symmetry about the longitudinal axis of the channel and this makes the fluid 

flowing in straight lines in the middle. Whereas, in case B (see Figure 11(c)) there is no symmetry, therefore the 

fluid exhibits a wavy path influenced by the waviness of the channel. 

Figures (12(a), (b), and (c)) show the streamlines contours for the three cases of the current study. The most 

important notice in these figures that the flow is homogenous and there is no circulation due to the existence of 

porous medium. 

4.5 Thermal Performance and Nusselt Number  

Heat transfer results of the three cases in this study are presented in terms of the isotherms and local Nusselt 

number figures. The distribution of the local Nusselt number for the cases A & B of wavy surfaces and the simple 

duct case is presented in Figure 13. This figure shows that the local Nusselt number values in the furrow of the 

wavy wall decrease, with respect to the simple duct, and become almost zero due to the high reduction in velocity 

there. In contrary at the crests, one can notice that the local Nusselt number values rise sharply. The reason is that 

the velocity of the flow, adjacent to the surface toward the crests, is increasing until it reaches values higher than 

those in the depth of the channel, as aforementioned. Hence, the convection heat transfer significantly increases 

between the surface and the flowing fluid. It is also noticed, due the nature of the velocity fluctuation,  that the 

decrease and increase in the local Nusselt number values weren’t of the same style, where the decrease remained 

retracted in low rang, while the increase took a significant rise extent. 

 

 

Figure 13. The distribution of the local Nusselt number for the three cases of study. Da = 10-5, ∅ = 0.9 

 

Regarding the comparison between the two cases A and B. It is noticed that the rise in the local Nusselt number 

at the crests had a greater extent of increase incase A than it had in case B. This leads to conclude that case A 

gives a larger increase in the heat transfer rate than case B. On another hand, by comparing these two cases with 

the simple channel it is found that the waviness in the surfaces has already enhanced the heat transfer (see Table 

2). 

It is worth to mention that the thermal fully developing length decreased due to the presence of the waviness in 

the surfaces as comparing to the simple duct (see Figure 14). This observation confirms the conclusion that the 

thermal performance of the wavy channel is better than the straight channel (simple duct).  
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Figure 14. Isotherms contours for the three cases of study. Da = 10-5, ∅ = 0.9 

 

Table 2. Average Nusselt number, amounts and percentage of increase for cases A & B in comparing with the 

simple duct. Da = 10-5, ∅ = 0.9, Re = 200, Pr = 0.7 

Case Nu % increment 

Simple duct 

Wavy channel (case A) 

Wavy channel (case B) 

4.924 

5.4212 

5.1499 

--- 

10.097 

4.587 

 

5. Conclusions 

A numerical study was performed to investigate the combined effect of waviness and porous media on the 

convection heat transfer and fluid flow characteristics. This study assumed two models of wavy channel fully 

filled with porous medium. The comparison between these models and simple duct had been discussed. The 

main conclusions of this study can be summarized as follows: 

1) For low Darcy numbers, It is clearly noticed that the maximum velocity, at the crests of wavy surfaces, 

within a single velocity profile is close to the surface not in the middle of the channel. 

2) Porous medium dominates the fluid layers and partially prevents the influence between each neighboring 

ones. Thus, the separation doesn’t occur and the circulation, in the cavities of wavy surfaces, disappeared. 

Thereby, a homogenous flow is in everywhere inside the porous medium. 

3) The increase and decrease in local Nusselt number values for the wavy channel weren’t of the same style, 

where the decrease (in the furrows) remained retracted in low rang, while the increase (in the crests) took a 

significant rise extent.  

4) The symmetric converging-diverging channel (case A) gives more enhancement in heat transfer than the 

channel with concave-convex walls (case B). However, the thermal performance of the wavy channels 

(cases A & B) is better than the straight channel (simple duct). 

Further investigations about the effects of wave length, amplitude, and phase change of the wavy surfaces on the 

fluid and thermal characteristics are required.   
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