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Abstract 

Knowledge may be structured in a manner that may either handicap or improve learning outcomes. Knowledge 
construction is therefore an important aspect of the learning and assessment process. This paper is primarily 
concerned with structural knowledge (knowing how) of which there are numerous representations and mapping 
methods each with their associated strengths and weaknesses. This paper presents the novel application of 
parsimony analysis for organizing and defining structural knowledge within the field of computer science. Work 
to date has clearly demonstrated there are considerable potential pedagogical advantages to this approach. 
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1. Introduction 

According to schema theory knowledge is stored as mental constructs called schemas (Rumelhart 1980). 
Schemas are arranged into interrelated networks called schemata. Memory can be considered therefore as 
schemata and learning is acquisition and the organization of schemata. There are different types of knowledge. 
Declarative knowledge (knowing that) is the ability to define or describe objects but does not imply 
understanding (Ryle 2009). Declarative knowledge is often defined using schemas (Rumelhart 1980). Procedural 
knowledge (knowing how) is the application of declarative knowledge and entails the application of schemas. 
Schemas must be selectively interpreted and employed to undertake a given task. Structural knowledge (knowing 
why) provides the conceptual basis for understanding and hence links declarative and procedural knowledge 
(Diekhoff 1983). Structural knowledge is also referred to as cognitive or internal knowledge. Meaning and hence 
understanding is implied by the pattern of schema relationships. All objects are identified, characterized and to 
various degrees related. Learning consists of building these new knowledge structures. Ideally knowledge should 
be related to existing knowledge hence reinforcing earlier learning. Hence learning outcomes may be improved 
if knowledge is structured. However the acquisition of deep conceptual knowledge is considered a complex 
scientific problem (Ohlsson 2009).  

2. Structural Knowledge 

A wide variety of different theories and methods have been employed to classify, represent, assess and convey 
structural knowledge each with their associated advantages and disadvantages (Jonassen 1993). All of these 
methods attempt to control complexity and explicitly define relationships in order to encourage higher order 
learning. Typically these methods are based on similarity data also referred to as semantic proximities (Nagy, 
1984) or quantifiable measure of closeness (Keppens 2008). Concepts may be defined by characters (attributes) 
of which three types have been defined – intrinsic, functional and relational (Klausmeirer 1992). An intrinsic 
character is an invariant property of a class of things. The systematic grouping of concepts for instructional 
purposes may be based on either successive or coordinate concepts (Merrill 1977). Successive concepts share a 
common, super-ordinate parent concept with the associated defining characters. Coordinate concepts share 
characteristics with other concept groups.  

Content structures are designed to convey structural knowledge and hence improve learning outcomes by 
organizing text into hierarchically structured relationships (Meyer 1985). Similarly the ‘frames’ and ‘slots’ 
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theory organizes information into data structures (frames) that can be filled with specific information (slots) 
(Minsky 1975). By contrast elaboration theory provides specific guidelines for content selection, sequencing and 
relationship identification (Reigeluth 1979). Spatial-semantic methods are often used because displays can 
concurrently display relationships (Kulhavy 1996), (Winn 1991). Spatial-semantic maps have been used as the 
basis of study and learning strategies (Larkin 1987). One technique employed is concepts maps (Novak 1984). 
Concept maps have both advocates and critics. It has been demonstrated that concept maps are relatively easy to 
use (Novak 2005). However other studies suggest concept maps do not accurately assess knowledge (Kinchin 
2005), (Kinchin 2000). Recent studies indicate that computer-based instruction and learning, if based on 
cognitive learning theory, may improve not only instructional methods but also learning outcomes (Kiewra 2005), 
(Kiewra 2009).  

It is important not only to consider how to teach a given subject but also how to assess student knowledge. 
Ideally assessment must be valid, reliable and efficient. A key element of assessment is to accurately measure not 
simply memory but also assimilation and understanding. There are a range of different assessment methods that 
include: multiple choice tests (Cordes 1994); (Parrish 1995); self-assessment (Whiddett 2000) and 
mastery-bridge tasks (Urban-Lurain 1999).  

However regardless of the instructional and assessment methods employed the problem they all must address is 
to both systematically define classification characteristics and a quantitative method of defining and testing 
relationships – in a simple manner. Cladistic analysis has been employed with considerable success in the field 
of taxonomy in order to analyze and structure extremely complex systems. This paper demonstrates how the well 
established cladistic principles may also be used to structure knowledge within the field of computer science and 
hence potentially improve learning outcomes.  

3. Cladistic Analysis – an overview 

Biological systems are extremely diverse and complex. Taxonomy is the science and practice of classification. 
Classifying things into a hierarchical relationship of sub-type and super-type categories is potentially useful for 
helping to understand diverse and complex systems.  Taxonomic principles, originally developed for the 
classification of living organisms, have successfully been used in other diverse disciplines such as manufacturing, 
biogeography and linguistics (McCarthy 2000), (Ganapathy 2006), (Rexova 2003).  

Cladistics is a method of classification used in taxonomy to group taxa (named groups with common 
characteristics) into hierarchical sets and subsets and is sometimes referred to as phylogentic systematic 
(Henning 1965). The aim of cladistics is to hypothesis relationships that can be expressed in a branching diagram 
(cladogram). Using the principle of parsimony information may be ordered and represented in an optimal 
relationship. Information is defined by characters which may be plesiomorphic (primitive) or apomorphic 
(advanced or derived). Plesiomorphic and apomorphic are relative terms.    

Sister groups are categorized by identifying apomorphic characters called synapomorphies and plesiomorphic 
characters called symplesiomorphies. Automorphic characters uniquely define terminal taxa and hence are not 
employed in the analysis. The possible relationships between characters, which define taxon groupings, are: 
consistent, congruent and homoplastic. A consistent character provides a unique definition that may be 
reinforced by another congruent character. A homoplastic character is inconsistent and conflicts with other 
characters. Finally there are three different character groups: monophyletic, paraphyletic and polyphyletic. A 
monophyletic group is defined by synapomorphies; a paraphyletic group is defined by symplesiomorphes or as a 
partially complete monophyletic group. A polyphyletic group is based on homoplastic characters.  

Cladistic analysis orders synapomorphies into a hierarchy with the greatest number of characters arranged in the 
simplest and the most parsimonious way. Character distribution is considered as the number of steps in a 
cladogram. Fewer steps represent a more efficient hierarchical classification. Parsimony is the criterion for 
choosing between different hierarchical classification structures. Parsimony analysis becomes rapidly 
computationally intensive as the number of characters employed increases. However, software is available such 
as Phylogenetic Analysis Using Parsimony (PAUP) that runs on a standard PC. Consider four different taxa (A, 
B, C, D) with six different characters (u, v, w, x, y, z) (table 1).  

Using PAUP the most parsimonious construction can be calculated (figure 1). The parsimonious topology, 
sometimes called a tree or cladogram, represents: 

 Explicit overall structure and relationships 

 Simplest hierarchical structure 

 Simplest logical sequence between taxa 
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 Minimum number of character changes 

Other, less parsimonious topologies are more complex sub-optimal solutions. Parsimonious analysis has 
potential pedagogical applications in the context of cognitive load.  Cognitive load is the amount of mental 
activity imposed on limited working memory. Cognitive load theory is concerned with the instructional 
implications of information structures and the associated cognitive schemata (Sweller 1988), (Paas 2003). 
Understanding and measuring cognitive load is a fundamental challenge for cognitive science (DeLeeuw 2008). 
According to some authors there are three kinds of cognitive processing during learning that may contribute to 
cognitive load – extraneous, intrinsic and generative (Sweller 1999), (Sweller 2005). Poorly designed 
instructional material leads to extraneous processing in which cognitive processes do not support learning 
objectives. The quality of intrinsic processing depends upon the complexity of the material used i.e. the number 
of interacting elements. This paper suggests that using parsimonious analysis it is possible to sequence 
instructional material that minimizes cognitive load by logically sequencing and hence reducing the complexity 
of the material.    

4. Parsimony Analysis in Computer and Engineering Science Education 

The Cisco Network Academy Program (CNAP) is an international program for teaching network technology and 
defines the global standard for curriculum within this field. This program is supported by recommended text 
books, on-line material and assessments. The learning sequence for teaching routing protocols in this material 
was analyzed according to page occurrence (table 2) (Cisco 2003). Routing protocols such as EIGRP and OSPF 
are complex and cannot be understood without the explanation of a lot of preliminary concepts such as: 
Administrative Distance, Metric, vector etc. Despite this these complex protocols are introduced in the 
introductory chapters. 

A more detailed analysis indicated that routing protocols are categorized according to the characters: metric, type 
(distance vector, balanced hybrid or link state), class and loop prevention (table 3). The metric for RIP is 
explained but no details are provided for either EIGRP or OSPF metrics.  Loop prevention is defined as a 
characteristic of OSPF. However all three routing protocols are automatic and hence have loop prevention 
mechanisms. The structural knowledge provided by this chapter is arguably incomplete, inconsistent and not 
logically sequenced.  

4.1 Cladistic analysis 

The routing protocols above were analyzed for Cladistic based characters and taxa. Six taxa (table 4) were 
selected along with six associated defining characters (table 5).  

All these routing protocols are designed to provide information about remote networks (character 1). Static and 
default router configuration are both manual. All other protocols obtain information about remote networks 
automatically (character 2). It is possible to represent a character as a binary value (present/absent) or a as 
multi-state value (0, 1, 2). Metric is a tri-state character; 0 no metric; 1 simple metric and 2 composite metric. 
Other characteristics, such as partial routing table updates (character 6), represent improvements in a routing 
protocol. Taxa and characters were entered into a matrix (table 6).  

Even with a relatively small data set this represents a large number of different ways the taxa may be ordered 
using these characters. This ordering is pedagogically important because this represents the structured knowledge 
with the associated teaching sequence. Using PAUP v4 these taxa and characters were analyzed. The 
parsimonious analysis, based on the taxa/character matrix (table 6), resulted in 105 trees being evaluated with the 
score of the worst tree being 14 and the best tree with a length of 7 (table 7). In the most parsimonious tree (tree 
length 7) there were no homoplastic characters. 

The parsimonious cladogram (Figure 2) represents a structured and logical teaching sequence with a minimum 
cognitive load. This represents a minimum cognitive load because each the sequence is hierarchically structured. 
The static routing protocol is the simplest protocol and represents the plesiomorphic (most primitive) character 
set. This plesiomorphic set is inherited by other more advanced apomorphic (advanced or derived) character sets. 
In effect students are able to systematically scaffold knowledge. In this context new knowledge reinforces 
existing knowledge. The limitations of both static and default routing are addressed by the characters: metric, 
update and automatic. These are common characters of all the more advanced routing protocols. However some 
characters, such as metric (composite) uniquely define the advanced routing protocol EIGRP.  

Furthermore there are various phylogeny programs, such as McClade, that can selectively provide alternative 
tree diagrams via a Graphic User Interface. Using McClade software the parsimonious classification tree can be 
selectively displayed for individual characters.  
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5. Parsimony Analysis compared to other methods 

A similar analysis of routing protocols was conducted using a range of different techniques: semantic maps 
(Fisher 1990); causal interaction and concept maps (Jonassen 1993); cross classification tables (Frase 1969); 
semantic feature analysis (Anders 1986); pattern and spider maps (Hanf 1971). All the techniques and methods 
could be used to represent relationships and hence define explicit structured knowledge for routing protocols. 
Most were easy to learn and use with supporting software for some methods. However none of the methods 
analyzed provided rigorous methods for defining concepts and characters. Furthermore none of the methods 
provided a rigorous, quantifiable mechanism for determining and calculating structured relationships (table 8). 
By contrast using parsimony analysis it is possible to define the optimum learning sequence. Namely static and 
default addressing represent the plesiomorphic character set and hence the initial topics to be taught. The 
limitations of these manual protocols are addressed by the more advanced apomorphic character sets of 
automatic updates with an associated simple metric of the RIP v1 routing protocol. RIP v2 inherits all these more 
primitive characters but incorporates an additional more advanced feature i.e. classeless addressing. Finally the 
problems associated with RIP v2 are solved by advanced features such as partial updates, hierarchical topologies 
and composite metrics. Because each apomorphic character set inherits characters from the plesiomorphic 
characters leaning is scaffold i.e. new learning reinforces earlier learning. Significantly it can be proven that this 
learning sequence represents the optimum cognitive load.  

6. Conclusions 

Learning outcomes have variously been classified and defined (Bloom, Engelhart et al. 1956), (Biggs and Collis 
1989). In order to achieve these outcomes a wide variety of different theories and instructional methods have 
been developed and employed – with various degrees of success. Similarly there are many different methods for 
displaying and representing structured knowledge each with relative strengths and weaknesses. However none of 
the methods analyzed provided systematic, quantifiable and easy to use procedures for defining and representing 
structured knowledge. This is important because quality learning depends upon cognitive load. This paper 
suggests that it is possible to quantifiably minimize the complexity of the material being taught and hence 
minimize the cognitive load using parsimony analysis. Using parsimony analysis it is possible to define the 
optimum learning sequence. Advantages of parsimony analysis include: 

 Defines logical learning sequence with minimum cognitive distance 

 Quantitative model 

 Automated tool available  

 Automated tool allows selective reordering according to different criteria  

However, the parsimony software tools are complex and require the user to have some knowledge of 
classification. In particular the user must be able to be able to distinguish between taxa (concepts) and characters 
(attributes). Further work is being undertaken to evaluate student learning outcomes for instructional material 
based on parsimonious analysis. 
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Table 1. Taxa-character matrix 

Character u v w x y z 

Taxa       

A       

B • •    • 

C •  • • • • 

D •  •  •  

 

 

Table 2. Cisco book chapter page occurrences 

 Taxa Chapter page occurrences 

1 Static 1, 3, 4, 5, 6, 7, 8, 15 

2 Default  4, 6, 7, 8, 9, 15 

3 RIP  3, 5, 8, 14 

4 EIGRP 3, 4, 5, 9, 14 

5 OSPF 3, 5, 9, 12, 14 

 

Table 3. Cisco routing protocol characteristics 

Taxa Chapter defined characteristics 

RIP Simple metric (hop count)  

Distance vector 

EIGRP Classless 

Balanced hybrid 

OSPF Classless 

Loop prevention 

Link state 
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Table 4. Routing taxa 

 Taxa Definition 

1 Static All routing information must be entered manually. 

2 Default  Manual method for entering a default route.  

3 RIP v1 Routing Information Protocol version 1 

4 RIP v2 Routing Information Protocol version 2 

5 EIGRP Enhanced Interior Gateway Routing Protocol 

6 OSPF Open Shortest Path First routing protocol 

 

Table 5. Routing characters 

 Character Definition 

1 Remote Networks can either be directly connected or remotely connected 

Remotely connected network must be discovered using a routing 

protocol. 

This is a binary character – remote or not remote. 

2 Automatic Routing protocols must be configured manually, others automatically 

discover remote networks.  

This is a binary character. 

3 Classless Some routing protocols only allow variable subnet boundaries. 

This is a binary character. 

4 Metric Routing protocols may employ a metric to determine path selection to 

remote network. Metric derivation may be simple or composition.  

This is a tri-state character: 

0 no metric 

1 simple metric 

2 composite metric. 

5 Hierarchical Some routing protocols allow networks to be divided into smaller 

systems. 

This is a binary character 

6 Updates Routing protocols distribute routing table information between 

routers. This is a tri-state character:  

0 no routing update 

1 full routing table exchange 

2 partial routing table exchange 
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Table 6. Taxa/Character matrix 

 Character      

 1 2 3 4 5 6 

Taxa Remote 

0 directly 

1 remote 

Automatic 

0 manual 

1 automatic 

Classless 

0 classfull 

1 classless 

Metric 

0 absent 

1 simple 

2 composite 

Hierarchical 

0 flat 

1 hierarchical 

Update 

0 absent 

1 full 

2 partial 

Static 1 0 0 0 0 0 

Default 1 0 0 0 0 0 

RIP v1 1 1 0 1 0 1 

RIP v2 1 1 1 1 0 1 

EIGRP 1 1 1 2 1 2 

OSPF 1 1 1 1 1 2 

 

Table 7. Parsimonious analysis 

Tree length Number of tree occurrences

7 1 

8 2 

9 4 

10 12 

11 14 

12 10 

13 42 

14 20 

Mean 12.18 

Standard deviation 1.61 
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Table 8. Structured knowledge modeling techniques 

 Advantage Disadvantage 

Semantic maps Define hierarchical 

relationships 

Easy to learn and use 

No rigorous method or technique for 

defining hierarchical relationships 

Causal interaction maps Define causal relationships 

between variable. 

Easy to learn and use 

No rigorous method or technique for 

defining causal relationships 

Concept maps Defines linked hierarchal 

relationships 

Easy to learn and use 

Maps may become complex 

 

No rigorous method or technique for 

defining causal relationships 

Cross classification 

tables 

Tabulates similarities and 

differences concepts using 

characters 

Easy to learn and use 

No rigorous method for defining concepts 

or characters 

Semantic feature analysis Tabulates similarities and 

differences between concepts 

using character states 

No rigorous method for defining concepts 

or characters 

Pattern maps Defines linked hierarchical 

relationships 

No rigorous method for defining 

hierarchical relationships 

Spider maps Defines highly structured 

hierarchical relationships – 

concepts, sub concepts etc 

More difficult to learn and use. 

 

No rigorous method for defining 

hierarchical relationships 

 

A BC D

u

v
w y

z
x z

 
Figure 1. Parsimonious topology 
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Figure 2. Parsimonious cladogram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


