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Abstract 

Wireless link quality is closely related to the received signal strength. Hence, transmit power control can be used 
to adjust the communication link quality to avoid asymmetric or weak links. This paper proposes a spatial radio 
resource model for quality of service (QoS) reliability in General Packet Radio Service (GPRS) networks. To 
model the propagation parameters, we adopt the empirical modeling approach by measuring signal outages at 
various base stations from a well established network, operating in Nigeria. We collect these data over a period 
of three months and apply the resultant data as parameters to the proposed model. We simulate the model under 
ideal conditions and evaluate the system’s performance as well as the power control tradeoff. A qualitative 
analysis using processed GIS maps, calls for effective power control in the system. Simulation results indicate 
that the existing system still requires further improvements to enhance its QoS reliability.  

Keywords: Quality of service, Signal outage, Power control, Radio resource management   

1. Introduction   

The sudden increase of mobile subscribers has posed great challenges on quality service delivery to the 
telecommunication industries. In Nigeria for instance, the poor quality of service (QoS), largely attributed to 
signal propagation defects has made some mobile users to subscribe to more than one network (service) provider 
in order to maintain seamless connectivity. QoS in cellular networks is defined as the capability of cellular 
service operators to provide satisfactory services such as voice quality, signal strength, low call blocking and 
dropping probabilities, high data rates for multimedia and data applications, etc. to customers. The satisfaction of 
users depends on propagation parameters such as call admission, connection quality and handover success. 
Though it is realistic to expect that at low loads, a network should satisfy all of its customers, there still remain 
some unsatisfied customers due to signal outage and high interference (Forkel, Schinnenburg and Wouters, 
2003). 

There has been lots of effort (in the telecommunication industries) at defining adequate and realistic end-to-end 
QoS indicators for cellular data services, which might be applicable for estimating the delivered QoS and for 
specifying the QoS control mechanisms for the underlying transport networks. Despite increased consideration 
for end-to-end performance required by user applications, the term QoS is usually not well defined or is loosely 
applied. QoS comes into focus when planning and deploying networks or when monitoring service quality. 
Aspects of networks and service provisioning are presented in Furuskar, Sara, Frank and Hakan (1999), but the 
standard is not application-oriented, and, in many areas, too vague for practical illustration. Nevertheless, 
Furuskar, Sara, Frank and Hakan (1999) set the QoS framework and the widely used definition as the collective 
effect of service performance which determines the degree of a user being served.  

Service functions (such as service management, connection quality, billing, customer net/service management, 
etc.) and service quality criteria (such as speed, accuracy, availability, reliability, security, simplicity and 
flexibility) are considered for creating a QoS matric for each service. Considering the goals and achievements of 
both customer and provider involved in the service, one may devise four complementary viewpoints: customers’ 
QoS requirements, perception and service provision, QoS offering and QoS achievement. Customers’ 
requirements are important when creating a QoS test plan for estimating the QoS delivered by the service 
provider. The delivered QoS is expressed as values assigned to QoS indicators, which are used for tracking 
performance and directing optimization. These indicators contribute towards the overall performance of the 
service offered (Sedoyeka, Hunaity and Tairo, 2009). 

Evaluating the QoS performance in a cellular environment is not a trivial task. One way of overcoming such a 
challenge is to organize individual services into four basic traffic classes (Hallman and Helmchen, 2001, Lee, 
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1998). For selected data services, acceptable performance boundaries for delay, delay variation and information 
loss are presented in Furuskar, Sara, Frank and Hakan (1999). Changes in the propagation environment and/or 
network traffic load will result in a major modification of the resources allocated to a user during a call or from 
call to call. The Gaussian distribution of performance measurements, inherent for non-variable radio 
environments and traffic load, creates room for highly skewed distributions (Cotanis, 2003). In the General 
Packet Radio Service (GPRS), resources are allocated based on radio channel condition, traffic load, requested 
QoS, etc. Thus, for the same network traffic load and service, the delivered QoS (e.g. throughput or session time) 
will depend on user-base transceiver station (BTS) distance. Users at close range may receive high data rate 
radio channels when compared with far-range users. Also, error control mechanisms, resource allocation and 
mobility management could further determine the delivered QoS.  

This paper therefore proposes a spatial radio resource model for QoS reliability and presents a procedure for 
mapping the spatial data measurements of the key quality and performance indicators to a GIS system. In 
addition to proposing the resource model, the paper also serves as data source and knowledge base for further 
research in signal strength modeling. The research though limited to GPRS networks, is generic and can be 
adapted to third generation (3G) networks. 

2. Statement of Problem 

The performance of wireless systems is mostly affected by a number of propagation phenomena (Mehritra, 
1994): 

(i) path-loss variation with distance 

(ii) random slow shadowing 

(iii) random multipath fading 

(iv) inter-symbol interference (ISI), co-channel interference as well as multiuser interference 

(v) background noise 

These phenomena greatly retard signal reception, leading to poor service quality. For network based services, 
QoS depends on the following factors (Jain, 2006): 

(i) Throughput: the rate at which the packets go through the network. Maximum rate is always 
preferred. 

(ii) Delay: the time at which a packet takes to travel from one end to the other. Minimum delay is 
always preferred. 

(iii) Packet loss rate: the rate at which a packet is lost. This should be as minimum as possible. 

(iv) Packet error rate: the errors which are present in a packet due to corrupted bits. This should be 
maintained at the bearest minimum. 

(v) Reliability: the availability of a connection at both links (forward and reverse link) 

These demands make QoS provisioning more challenging, even in recent times. Although there are cellular base 
station tower networks across many countries in the world, there are still many areas within these countries that 
do not possess good reception. Some rural areas are unlikely ever to be effectively covered, since the cost of 
erecting a cell tower is too high for only a few customers. Even in high reception areas, it is often found that 
basements and the interiors of large buildings have poor reception. Weak signal strength can also be caused by 
destructive interference of the signals from local towers in urban areas, or by the construction materials used in 
some buildings, causing rapid attenuation of signal strength. Large buildings such as warehouses, hospitals and 
factories, often have no usable signal further than a few metres from the outside walls. This is particularly true 
for networks operating at higher frequency, since these signals are attenuated more rapidly by intervening 
obstacles, although they are able to use reflection and diffraction to circumvent obstacles. 

A cost effective approach to QoS provisioning using a power control model is therefore offered by this paper. 
This approach simulates a reliability model that improves the QoS of cellular networks. 

3. Related Literature 

Radio Resource Management (RRM) involves the various strategies and algorithms for controlling parameters 
like signal strength, transmit power, channel allocation, handover, etc. It is the system level control of co-channel 
interference and other radio transmission characteristics in wireless communication systems. Geographical 
Information System (GIS) has become an essential tool for easy analysis of large quantity of spatial information. 
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The application of GIS for GSM-related data handling, presupposes efficient spatial data storage and handling 
aimed at improving the effectiveness of managing radio resource parameters.  

GPRS is designed for transmitting packet data. It takes its radio resource from a pool of unused channels of the 
GSM voice services. Obviously, the introduction of GPRS impacts on the voice services. However, the 
introduction of GPRS into GSM networks without allocating new spectrum will increase the interference 
probability of circuit switched services. In addition, the physical channel allocated to GPRS is shared by a few 
data users simultaneously. The co-channel interference to the voice users might vary rapidly and dramatically in 
the time interval from 20 ms to a few seconds depending on the transmitted packet data size (Ni, Liang and 
Haggman, 1999), because the locations of users using the data packets could be largely different. This effect 
could drive the system into an unpredictable and unstable state that could result in a degraded quality of voice 
services. Therefore, a preliminary resource planning for GPRS is necessary to guarantee quality of service for 
voice users. 

Empirical measurements of wireless signal strength and its dependence on various factors have been carried out 
by cellular service providers and consulting companies. For instance, In Omnitele (http://www.omnitele.fi/), 
experiments have been conducted to measure call success rate, signal strength and throughput, along roads, train 
routes and in urban and rural areas. Their objective was to utilize the collected measurements to optimize 
operators’ network performance for better customer service and hardware utilization. However, their data is not 
publicly available. Wagen (1991) conducts a series of experiments in small (62 x 65 meters) urban areas to 
measure signal loss in both line-of-sight and non-line-of-sight conditions. He developed an empirical model to 
characterize the relationship between signal strength and distance. Chen and Siew (2003) conduct indoor 
experiments to measure the performance of a wireless LAN. Their focus was to investigate how the packet and 
bit error level characteristics are affected by different environmental factors such as humidity, microwave 
interference, wall obstacle and distance. Wide-area measurements recording of GPRS signal strength at various 
locations and under a variety of conditions in Sydney, Australia, focusing particularly on several public transport 
routes have been conducted by Chan, Chung, Hassan, Lan and Libman (2005). Their analysis show that, among 
the factors studied, location is clearly the most dominant factor affecting signal quality, with the overall impact 
of all other factors being much less significant. Hence, even a simple outage prediction approach, taking into 
account only the location of the vehicle is most likely to cause a performance improvement in practice. 

QoS should be evaluated for correctness. The expected QoS requirements may not be obtained at all times 
(calduwel, 2008). Sedoyeka, Hunaity and Tairo (2009) present the QoS required for developing countries using 
Tanzania as a case study. The authors discuss issues surrounding QoS requirements for the modern world and 
compare these requirements to that of developing countries. In Newton, Arockiam and Kim (2009), a QoS 
strategy to select an appropriate coding scheme that reduces data transfer complexities for applications based on 
the coding and data rate scheme characteristics in GPRS network is proposed. They also analyze coding schemes 
with various Internet applications and QoS parameters such as reliability, delay and bandwidth for mobile 
networks. Knowledge of the strengths and weaknesses of mobile systems provides a baseline for identifying 
ways of maximizing revenue and business potentials of such systems. QoS prediction techniques are necessary 
for the evaluation of the performance (with respect to reliability) of various applications and also to overcome 
QoS issues in GPRS networks (Calduwel and Arockiam, 2009).  

4. Data Instrument and Field Survey Techniques  

(i) Base Map and Survey of Mast Points using GPS 

The base map of Akwa Ibom state is very essential in this research. The base map, showing local government 
areas, was obtained from the Akwa Ibom State Ministry of Lands and Environment’s Geographic Department. 
The field techniques involve a survey of base stations (masts) location in Akwa Ibom State and taking the 
required measurements (longitude and latitude) using a GPS. 

(ii) Map Processing 

The raw map is processed in the following order: (i) scanning, (ii) geo-referencing and (iii) digitization. The 
Digital Elevation Model (DEM) of the study area is used to determine the slope pattern of Akwa Ibom State. 
This elevation model is useful for the appropriate identification of mast locations and slope pattern analysis. The 
slope pattern analysis will be done in future paper and shall not be discussed further. 

(iv) Database and Simulation Programming 

The collated empirical data (cell site locations and signal outage probabilities for each cell) are captured in the 
Microsoft Excel file format. To ease programming, we converted these data into an input (text data or comma 
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separated value, .csv file) format. Then with the Visual Basic (VB) 6.0 programming language, a simulation 
program was written to implement the QoS reliability of the network using the system model. The result of the 
simulation were then written to an output (text) file, ported to Ms. Excel and finally represented in ArcGIS 9.1. 

5. Empirical Signal Outage Data Analysis 

Knowledge of observed data is required when carrying out a simulation study. The essence of this data is to 
enhance the accuracy of predictions. In this section, we analyze data measurements from Airtel Nigeria (formally 
Zain Communications Limited). We study the signal outage probability trend of the cellular system for Akwa 
Ibom State (east region of Nigeria). The resulting average outage probabilities are then used as simulation input 
to the derived model. During the data gathering stage, weekly signal outage durations were measured for a 
period of three months (September-November, 2009), at the various base station controllers (BSCs). Table 1 
shows the average signal outage occurrences in minutes for the observed period at the different BSCs; each BSC 
covers a number of cells or base stations. From Table 1, we observe that signal outages occur in every 1.45 hours 
on the average. This reveals that Airtel Nigeria still requires the optimization of network parameters to avert 
further service degradation. 

Presented in Appendix 1, is the signal outage rate (in percentage), obtained at the various base stations for the 
duration under study. Airtel has 148 base stations distributed across the entire state, with Uyo the state capital 
having the highest concentration of base stations. We observe from this data that on the average, there is a 
0.01202 likelihood (i.e. 1.20%) of signal outages across the base stations.  

Signal outage has been proved to have logarithmic characteristics (Kandukuri and Boyd, 2002). Hence, we fit a 
logarithmic predictive model (trend line equation) into a scatter plot in Figure 1, which relates the outage 
probability and number of base stations. The graph shows that on the average, signal outage slowly decreases as 
the number of base stations increase. We also discover that signal outages is not significantly influenced ny the 
number of base stations (i.e. R=0.06). Therefore Airtel should concentrate more on network optimization 
techniques such as efficient call admission and power control, proper bandwidth management and perfect 
channel allocation, rather than planting more base stations as witnessed in recent times. 

We apply a 95% confidence interval (see Table 2) to predict new empirical results. This interval indicates that 
new observations are likely to fall within the specified limits. 

6. The System Model 

In the design of any radio system, a fundamental task is to predict the terrain coverage of the proposed system 
and determine whether the intended service objectives are met. Over the years, a wide variety of approaches 
have been developed to predict network coverage using propagation modeling. Propagation in this context refers 
to the transfer or transmission of signals from a transmitter to a receiver. Propagation modeling is therefore an 
attempt to predict what happens to signals en-route the transmitter to the receiver. The signal strength coverage 
largely depends on factors such as the users’ capacity (i.e. the number of users the network supports), equipment 
quality and the frequency spectrum (bandwidth capacity).The most commonly used method for effective 
propagation modeling is the empirical or physical models. 

Empirical models use measurement data to define the propagation behaviour. These measurements are called 
“predictors” or “specifiers” in generic statistical modeling theory. Predictors are parameters, which have been 
established through statistical analysis to have relationship (or correlate) with the quantity to be predicted. The 
accuracy of empirical models strongly depends on how universally applicable the environment is. A common 
problem is attempting to use empirical models in areas where the propagation environment widely deviate from 
the environment the data was gathered. With the recent advent of automated field strength measurement systems 
with GPS position logging, it now becomes relatively easy to acquire vast amount of measurements. This has led 
to the use of custom empirical propagation models, which equations are “tuned” for a given system or for a 
given transmitter or base station (cell) within the system. 

Unlike empirical models, physical models do not use measurements for predictions but instead rely on physical 
laws governing the interaction of electromagnetic waves with the physical elements of the propagation 
environment. To be effective, physical models require detail description of elements of the propagation 
environment for their predictions. For this reason, their weakness is that they require extensive database 
information (terrain elevations, building wall locations, surface material characteristics, etc.) which in turn 
demand significant computer resources to accommodate the information necessary for the required 
computations.    
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To emulate and simulate realistic mobile radio networks, the propagation of electro-magnetic waves must be 
carefully modeled. An integral aspect of radio propagation besides path-loss and multi-path fading is loss due to 
shadow fading, also referred to as shadowing or long-term fading. This phenomenon is caused by the presence of 
obstacles lying in the propagation path of the radio waves (Walke, 2001, Lee, 1993). The electromagnetic waves 
thus exhibit significant variations largely due to the shadowing effects by obstacles. The resulting undulating 
signal is referred to as “shadowing signal”. Hence, shadow fading represents signal fluctuations caused by 
obstructions (natural or artificial) around the average path-loss, in the way of propagating electromagnetic 
signals (waves). Here, signals are prevented from traveling along the shortest and direct path (usually also, the 
path that experiences the least attenuation) between a transmitter and a receiver. Having knowledge of 
shadowing signal will greatly enhance communication quality in all types of wireless networks and is used in the 
planning stages of second generation (2G) and third generation (3G) cellular networks (i.e. where best to locate 
the base stations). Three components of electromagnetic signal that could be used to perform predictions are 
path-loss, shadowing or large-scale fading signal and fast fading or small-scale fading signal.  

Let the shadow fading value be  . This value is usually characterized by a Gaussian (normal) distribution in the 
logarithmic scale with zero mean and standard deviation in the magnitude of 8-10dB (Walke, 2001). The 
probability density function (PDF) is given by 
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with mean,  and standard deviation,  . In the linear scale, shadow fading is log-normal and is referred to as 

log-normal fading. It is obvious that shadow fading values depend on the terrain and the surrounding property in 
the mobile’s vicinity. These values must show a spatial correlation due to the structural stability of the terrain 
and ground morphology, which do not abruptly change. Moreover, another user may experience similar shadow 
fading effects when passing by same location and hence, the need for an accurate correlation model.  
Now, let Xj be the number of ongoing data transmission of type j in some given sector, and

),...,,( 21 kXXXX  . For cellular systems, in order to receive a signal, the ratio of its received power to the 

sum of the background noise and interference must exceed a given constant. Thus for some given X, this 
condition is represented as (Laiho and Wacker, 2001, Khumsi, Mori and Kobayashi, 2005): 
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j  is the ratio of the received power to total received interference and noise at the base station, SINR. 

 SIRj is the required signal-to-interference ratio for each class of j. 
Substituting 
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where 
 P is the transmit power 
 d is the distance 
 n is the number of users 
 f is the reuse factor 
 α is the propagation exponent 
The reliability model is then derived from the required Signal-to-Interference Ratio (SIRj) given as (Kurniawan, 
2003, Isabona and Ekpenyong, 2008): 
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where 

j  is the energy per transmitted bit of type j 

0N  is the thermal noise density 

W  is the modulation bandwidth 
Rj  is the call transmission rate of type j 

In the above case, we assume perfect power control. Due to the inaccuracies of closed-loop fast power control 

mechanisms arising mostly from shadow fading of the radio signal, j  may not always equal SIRj. To model 

these variations, we define SIRj to be a random variable of the form, 1010
j

j



   (Vertibi, Vertibi, Gilhousen and 

Zehavi, 1994, Wong, 1997), where ),(~   j
 is normally distributed and includes the shadow fading and 

standard deviation components. The standard deviation of shadow fading has typical experimental values 
between 0.3 and 2dB (Koo, Ahn, Lee and Kim, 1999, Viterbi and Viterbi, 1993).  

Signal quality is largely detected by the SINR, j . On a large scale, both useful and interfering signals 

experience lognormal shadow fading (Gao, Xu and Ye, 2009). This implies that j  can be modeled by 

).../()...( 11 mn YYXX  , where all random variables mn YYXX ,...,,,..., 11 are lognormally distributed. 

j  only characterizes the instantaneous quality and has a lognormal distribution (Anderson, 1988) given by 
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where 10ln/10h . 

Since j  is random and we desire the use of observed signal outage probabilities mean as predictor to the 

system’s model, we rewrite equation (3) in terms of j , the average received SINR, and determine the required 

SIR, SIRj , such that jj SIR , where jSIR  includes power control errors and replaces SIRj. We then 

determine jSIR  for the outage condition:   ]Pr[ jj SIR , where   is a reliability, usually set to 99% 

(Wu, Wu and Zhou, 1997). 
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where Q, herein defined as the outage probability function is given as (Ekpenyong, Umoren and Isabona, 2009): 
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Substituting equation (3) into equation (6), we obtain 
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Equation (8) is the QoS reliability model. The model is suitable for analysing the performance reliability in 
GPRS systems.  
7. Model Simulation and Results Interpretation 

Figures 2 and 3 show processed GIS maps for observed and simulated signal qualities, distributed across the 
various base stations, within the study area. The observed signal quality data (Table 2) were used as parameters 
in the SINR model (equation (3)). This equation, which represents a reliable measure of signal strength quality at 
the base stations, was then used to simulate the system and study the consequence of improved power control. 
The simulated result is summarized in Table 3. A qualitative view at Figures 2 and 3 reveal that Figure 3 shows a 
remarkable improvement in signal quality across the study area. We attribute this improvement to the 
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effectiveness of the model at minimizing signal outages in the network, thus, illustrating the need for effective 
transmission power control in the network.  

Comparing Tables 2 and 3, we observe that the simulation provides a 26% improvement on the present average 
signal quality (i.e. from 54.09% to 80.08%). This improvement is naturally achievable through the provision of 
good quality base station infrastructure with quality amplifiers and excellent power control mechanisms. 

The performance of the system using the reliability model in equation (8) for urban and suburban environments 
was also simulated, using empirical parameters from the field (see Table 4). Figures 4 and 5 depict the sensitivity 
of outage probability on varied number of users. We observe from these figures that QoS degrades as the number 
of users’ connection increases. This is due to mobile users’ competition for available network resources, which 
calls for appropriate admission control to preserve ongoing user connections in the network. Outage performance 
as a function of users and their locations for urban and suburban environments are presented in Figures 6 and 7 
respectively. An observation of these graphs show service stability in terms of QoS, making the network to be 
more reliable. In general, this performance proves that capacity and coverage are both provisional quantities and 
will be re-dominated by stability issues (more than the actual resource constraints) in urban and suburban areas. 

8. Conclusion 

The success of any wireless network depends on the signal strength. A strong signal is required for effective 
communication of all network devices or nodes. A weak signal causes low bandwidth, thus, preventing 
communication and causing network disruptions which occur as a result of inefficient power allocation. This 
paper has shown that power control is very critical in wireless networks to ensure longer battery life of mobile 
devices and for increased utilization of the limited wireless spectrum. We observed that the frequent rate of 
signal outages (i.e. outage probabilities) can be minimized by allocating power in a manner that each mobile has 
an extra signal to interference ratio (SIR), i.e., its SIR is somewhat above a minimum SIRth value required for 
reception. Therefore, power control is very crucial when managing wireless communication systems. 

We have also proposed a QoS reliability model for GPRS networks. This model was used to simulate a realistic 
network operating in Nigeria, which empirical data parameters served as predictors to the simulated system, for 
urban and suburban environments. We observed that QoS reliability is very essential in any communication 
system and wireless networks should be optimized for excellent reliability to ensure system stability.  
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Table 1. Average outage duration data measured from the BSCs of Zain comm. Ltd. 

BSC index Number of BS Sept Oct Nov Average signal outage  

occurrence time (mins)

BSC 1 22 32.80 75.34921 82.97189 63.71

BSC 2 26 72.40 212.6984 124.5052 136.54

BSC 3 25 240.17 97.65633 108.68 148.84

BSC 4 27 117.83 136.7182 85.24272 113.26

BSC 5 24 24.50 91.72245 23.09744 46.44

BSC 6 24 168.26 94.95422 102.5988 121.94

Avg. time (mins) 109.33 118.18 87.85 105.12

 

Table 2. Average empirical signal strength data obtained from the BSCs of Zain comm. Ltd 

BSC index Number of base stations Signal Strength (%) 95% Confidence interval (CI) 

BSC 1 22 47.3031 47.3031 14.7384

BSC 2 26 61.7261 61.7261 11.0927

BSC 3 25 51.9846 51.9846 14.2050

BSC 4 27 63.2647 63.2647 11.8221

BSC 5 24 45.8737 45.8737 15.0800

BSC 6 24 54.4019 54.4019 13.1772

Average 54.0923

 

Table 3. Simulated signal strength 

BSC index Number of base stations Signal Strength (%) Confidence interval (CI) 

BSC 1 22 79.2419 79.2419 7.1777

BSC 2 26 83.3915 83.3915 3.7865

BSC 3 25 78.1179 78.1179 8.3057

BSC 4 27 83.4506 83.4506 3.9310

BSC 5 24 74.4031 74.4031 9.0486

BSC 6 24 81.9124 81.9124 4.3975

Average 80.0862

 

 

 

 

 



www.ccsenet.org/mas                      Modern Applied Science                     Vol. 5, No. 2; April 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 66

Table 4. Simulation input parameters 

Empirical parameter Value 

Outage probability function (Q(x)) 0.01202 

Transformation constant (h) 10ln/10  

Transmit power (P) 43 

Distance 1-5 Km 

Thermal or background noise -105 

Number of users 20-100 

Frequency reuse factor (f) 0.50 

Propagation exponent ( ) 3-urban, 3.5-suburban 

Shadow fading (  ) 
6 

Standard deviation of shadow fading (  ) 
0.8 

 

 

Figure 1. Distribution of signal outage data across the various base stations in Akwa Ibom State using a 

logarithmic predictive model 
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Figure 2. Processed GIS map showing the distribution of observed signal quality data over the study area 

 

Figure 3. Processed GIS map showing simulated signal quality data over the study area 
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Figure 4. Graph of reliability vs. distance (for urban environments) 

 

Figure 5. Graph of reliability vs. distance (for suburban environments) 
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Figure 6. Graph of reliability vs. distance (for urban environments)  

 

Figure 7. Graph of reliability vs. distance (for suburban environments)
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APPENDIX 1: Percentage signal outage data recorded from the Zain communications Ltd. 

Cell 
index 

% 
Outage  

Cell 
index % Outage Cell index % Outage Cell index 

% 
Outage 

Cell 0 1.900560  Cell 37 0.682263 Cell 74 0.169955 Cell 111 0.060257

Cell 1 2.225231  Cell 38 0.249375 Cell 75 1.108644 Cell 112 2.152410

Cell 2 2.678569  Cell 39 2.987739 Cell 76 0.018592 Cell 113 0.265182

Cell 3 0.647266  Cell 40 2.001488 Cell 77 1.436218 Cell 114 0.073982

Cell 4 3.759278  Cell 41 3.160384 Cell 78 0.297343 Cell 115 0.237083

Cell 5 0.752096  Cell 42 0.699443 Cell 79 0.064561 Cell 116 0.368860

Cell 6 0.682328  Cell 43 0.681711 Cell 80 0.009287 Cell 117 3.339874

Cell 7 0.365620  Cell 44 0.319251 Cell 81 0.759156 Cell 118 0.276557

Cell 8 5.154007  Cell 45 0.169159 Cell 82 0.184011 Cell 119 0.685075

Cell 9 0.273185  Cell 46 0.369225 Cell 83 3.641077 Cell 120 3.660492

Cell 10 1.839782  Cell 47 0.187309 Cell 84 0.749730 Cell 121 0.596638

Cell 11 1.453072  Cell 48 7.066487 Cell 85 0.102846 Cell 122 0.292760

Cell 12 1.073690  Cell 49 0.039532 Cell 86 0.181713 Cell 123 0.380567

Cell 13 1.974146  Cell 50 0.247301 Cell 87 1.569628 Cell 124 0.298694

Cell 14 0.352293  Cell 51 0.282981 Cell 88 1.458179 Cell 125 0.444400

Cell 15 0.303887  Cell 52 2.206515 Cell 89 0.153801 Cell 126 0.834968

Cell 16 1.549574  Cell 53 1.210779 Cell 90 0.010632 Cell 127 0.706207

Cell 17 0.815010  Cell 54 0.601800 Cell 91 1.272525 Cell 128 0.041909

Cell 18 0.272726  Cell 55 2.531127 Cell 92 0.690065 Cell 129 0.976166

Cell 19 0.000000  Cell 56 2.408651 Cell 93 1.306052 Cell 130 1.693507

Cell 20 2.255864  Cell 57 0.844827 Cell 94 0.399715 Cell 131 0.879778

Cell 21 0.809219  Cell 58 0.219527 Cell 95 0.999974 Cell 132 2.158879

Cell 22 0.244489  Cell 59 2.610258 Cell 96 4.145708 Cell 133 4.074515

Cell 23 0.215645  Cell 60 1.809252 Cell 97 0.238867 Cell 134 3.657940

Cell 24 0.419950  Cell 61 3.738092 Cell 98 2.274855 Cell 135 2.579154

Cell 25 0.467174  Cell 62 0.814857 Cell 99 0.028641 Cell 136 1.829099

Cell 26 0.589142  Cell 63 0.757454 Cell 100 3.616483 Cell 137 0.324157

Cell 27 4.035529  Cell 64 0.021668 Cell 101 0.184788 Cell 138 0.883919

Cell 28 0.961508  Cell 65 0.103086 Cell 102 0.321373 Cell 139 0.020069

Cell 29 0.379562  Cell 66 0.637107 Cell 103 1.667664 Cell 140 0.110643

Cell 30 0.627420  Cell 67 0.306750 Cell 104 1.632758 Cell 141 1.035283

Cell 31 0.454992  Cell 68 4.422125 Cell 105 4.700452 Cell 142 0.134190

Cell 32 0.261032  Cell 69 0.004034 Cell 106 3.435652 Cell 143 2.349385

Cell 33 1.336839  Cell 70 0.144336 Cell 107 1.809706 Cell 144 1.513420

Cell 34 0.081864  Cell 71 0.044674 Cell 108 5.458912 Cell 145 0.271109

Cell 35 1.128759  Cell 72 0.102713 Cell 109 3.570565 Cell 146 0.000000

Cell 36 1.565202  Cell 73 0.066474 Cell 110 0.063031 Cell 147 0.331064
     AVERAGE 1.202214

 

  


